A deep learning algorithm for detecting acute myocardial infarction

被引:56
作者
Liu, Wen-Cheng [1 ]
Lin, Chin-Sheng [1 ]
Tsai, Chien-Sung [2 ]
Tsao, Tien-Ping [3 ]
Cheng, Cheng-Chung [1 ]
Liou, Jun-Ting [1 ]
Lin, Wei-Shiang [1 ]
Cheng, Shu-Meng [1 ]
Lou, Yu-Sheng [4 ]
Lee, Chia-Cheng [5 ,6 ]
Lin, Chin [4 ,7 ,8 ]
机构
[1] Tri Serv Gen Hosp, Div Cardiol, Dept Internal Med, Natl Def Med Ctr, Taipei, Taiwan
[2] Tri Serv Gen Hosp, Div Cardiovasc Surg, Dept Surg, Natl Def Med Ctr, Taipei, Taiwan
[3] Cheng Hsin Hosp, Div Cardiol, Ctr Heart, Taipei, Taiwan
[4] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[5] Tri Serv Gen Hosp, Natl Def Med Ctr, Planning & Management, Taipei, Taiwan
[6] Tri Serv Gen Hosp, Div Colorectal Surg, Dept Surg, Natl Def Med Ctr, Taipei, Taiwan
[7] Natl Def Med Ctr, Sch Med, Taipei, Taiwan
[8] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
关键词
acute myocardial infarction; artificial intelligence; deep learning model; electrocardiogram; ST-SEGMENT ELEVATION; EMERGENCY-DEPARTMENT; ARTIFICIAL-INTELLIGENCE; ELECTROCARDIOGRAM; CLASSIFICATION; DIAGNOSES;
D O I
10.4244/EIJ-D-20-01155
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Delayed diagnosis or misdiagnosis of acute myocardial infarction (AMI) is not unusual in daily practice. Since a 12-lead electrocardiogram (ECG) is crucial for the detection of AMI, a systematic algorithm to strengthen ECG interpretation may have important implications for improving diagnosis. Aims: We aimed to develop a deep learning model (DLM) as a diagnostic support tool based on a 12-lead electrocardiogram. Methods: This retrospective cohort study included 1,051/697 ECGs from 737/287 coronary angiogram (CAG)-validated STEMI/NSTEMI patients and 140,336 ECGs from 76,775 non-AMI patients at the emer-gency department. The DLM was trained and validated in 80% and 20% of these ECGs. A human-machine competition was conducted. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the performance of the DLM. Results: The AUC of the DLM for STEMI detection was 0.976 in the human-machine competition, which was significantly better than that of the best physicians. Furthermore, the DLM independently demonstrated sufficient diagnostic capacity for STEMI detection (AUC=0.997; sensitivity, 98.4%; specificity, 96.9%). Regarding NSTEMI detection, the AUC of the combined DLM and conventional cardiac troponin I (cTnI) increased to 0.978, which was better than that of either the DLM (0.877) or cTnI (0.950). Conclusions: The DLM may serve as a timely, objective and precise diagnostic decision support tool to assist emergency medical system-based networks and frontline physicians in detecting AMI and subse-quently initiating reperfusion therapy.
引用
收藏
页码:765 / +
页数:29
相关论文
共 31 条
[1]   Lack of sensitivity of the electrocardiogram for detection of old myocardial infarction: A cardiac magnetic resonance imaging study [J].
Asch, Federico M. ;
Shah, Sangeeta ;
Rattin, Christine ;
Swaminathan, Srirama ;
Fuisz, Anthon ;
Lindsay, Joseph .
AMERICAN HEART JOURNAL, 2006, 152 (04) :742-748
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]  
Collet J.P., 2021, EUR HEART J, V42, P1289, DOI [10.1093/eurheartj/ehaa575, DOI 10.1093/eurheartj/ehaa575]
[4]   Computerized interpretation of the prehospital electrocardiogram: predictive value for ST segment elevation myocardial infarction and impact on on-scene time [J].
de Champlain, Francois ;
Boothroyd, Lucy J. ;
Vadeboncoeur, Alain ;
Huynh, Thao ;
Nguyen, Viviane ;
Eisenberg, Mark J. ;
Joseph, Lawrence ;
Boivin, Jean-Francois ;
Segal, Eli .
CANADIAN JOURNAL OF EMERGENCY MEDICINE, 2014, 16 (02) :94-105
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Electrocardiographic diagnosis of ST segment elevation myocardial infarction: An evaluation of three automated interpretation algorithms [J].
Garvey, J. Lee ;
Zegre-Hemsey, Jessica ;
Gregg, Richard ;
Studnek, Jonathan R. .
JOURNAL OF ELECTROCARDIOLOGY, 2016, 49 (05) :728-732
[7]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[8]  
Gupta A, IFMBE P, V80, DOI [10.1007/978-3-030-64610-340, DOI 10.1007/978-3-030-64610-340]
[9]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+
[10]   2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation [J].
Ibanez, Borja ;
James, Stefan ;
Agewall, Stefan ;
Antunes, Manuel J. ;
Bucciarelli-Ducci, Chiara ;
Bueno, Hector ;
Caforio, Alida L. P. ;
Crea, Filippo ;
Goudevenos, John A. ;
Halvorsen, Sigrun ;
Hindricks, Gerhard ;
Kastrati, Adnan ;
Lenzen, Mattie J. ;
Prescott, Eva ;
Roffi, Marco ;
Valgimigli, Marco ;
Varenhorst, Christoph ;
Vranckx, Pascal ;
Widimsky, Petr .
KARDIOLOGIA POLSKA, 2018, 76 (02) :229-313