Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation

被引:2
|
作者
Yang, Huaijun [1 ]
Shi, Dongyang [2 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear parabolic integro-differential equation; FEM; Linearized backward Euler scheme; Optimal error estimates; APPROXIMATIONS; ELEMENTS;
D O I
10.1016/j.apnum.2022.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the error analysis of Galerkin finite element method (FEM) is investigated for a nonlinear parabolic integro-differential equation in two dimensions. By skillfully and rigorously manipulating the nonlinear term, optimal error estimates in L-infinity (L-2(Omega)) and L-infinity (H-1(Omega)) are obtained for a linearized backward Euler fully-discrete scheme, which improves the suboptimal approximation in L-infinity (L-2(Omega)) in the previous literature. Finally, some numerical results are provided to verify the theoretical findings. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:403 / 416
页数:14
相关论文
共 50 条