FINITE FIELD EXTENSIONS WITH THE LINE OR TRANSLATE PROPERTY FOR r-PRIMITIVE ELEMENTS

被引:8
作者
Cohen, Stephen D. [1 ]
Kapetanakis, Giorgos [2 ]
机构
[1] 6 Bracken Rd, Aberdeen AB12 4TA, Scotland
[2] Univ Crete, Dept Math & Appl Math, Voutes Campus, Iraklion 70013, Greece
关键词
primitive element; high-order element; line property; translate property; ORDER;
D O I
10.1017/S1446788720000099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r; n > 1 be integers and q be any prime power q such that r vertical bar q(n) - 1. We say that the extension F-qn/F-q possesses the line property for r-primitive elements property if, for every alpha, theta is an element of F-qn(*) such that F-qn=F-q(theta), there exists some x is an element of F-q such that alpha(theta + x) has multiplicative order (q(n)-1)/r. We prove that, for sufficiently large prime powers q, F-qn/F-q possesses the line property for r-primitive elements. We also discuss the (weaker) translate property for extensions.
引用
收藏
页码:313 / 319
页数:7
相关论文
共 18 条
[1]  
Apostol T. M., 1976, INTRO ANAL NUMBER TH
[2]   EXISTENCE RESULTS FOR PRIMITIVE ELEMENTS IN CUBIC AND QUARTIC EXTENSIONS OF A FINITE FIELD [J].
Bailey, Geoff ;
Cohen, Stephen D. ;
Sutherland, Nicole ;
Trudgian, Tim .
MATHEMATICS OF COMPUTATION, 2019, 88 (316) :931-947
[3]   Elements of high order in Artin-Schreier extensions of finite fields Fq [J].
Brochero Martinez, F. E. ;
Reis, Lucas .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 :24-33
[4]  
Carlitz L., 1953, Quart. J. Math., V4, P4, DOI DOI 10.1093/QMATH/4.1.4
[5]  
Cohen S. D., 2009, J COMB NUMBER THEORY, V1, P189
[6]  
COHEN SD, 1983, J LOND MATH SOC, V27, P221
[7]   The trace of 2-primitive elements of finite fields [J].
Cohen, Stephen D. ;
Kapetanakis, Giorgos .
ACTA ARITHMETICA, 2020, 192 (04) :397-419
[8]  
Cohen SD, 2010, CONTEMP MATH, V518, P113
[9]  
Davenport H., 1937, Q. J. Math., Oxf. Ser., V8, P308
[10]   Elements of provable high orders in finite fields [J].
Gao, SH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) :1615-1623