A combinatorial proof of Marstrand's theorem for products of regular Cantor sets

被引:4
作者
Lima, Yuri [1 ]
Moreira, Carlos Gustavo [1 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Cantor sets; Hausdorff dimension; Marstrand theorem; HAUSDORFF DIMENSION; PROJECTIONS;
D O I
10.1016/j.exmath.2011.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a paper from 1954 Marstrand proved that if K subset of R(2) has a Hausdorff dimension greater than 1, then its one-dimensional projection has a positive Lebesgue measure for almost all directions. In this article, we give a combinatorial proof of this theorem when K is the product of regular Cantor sets of class C(1+alpha), alpha > 0, for which the sum of their Hausdorff dimension is greater than 1. (C) 2011 Elsevier GmbH. All rights reserved.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 11 条
[1]  
Falconer K., 1986, CAMBRIDGE TRACTS MAT
[2]   ON HAUSDORFF DIMENSION OF PROJECTIONS [J].
KAUFMAN, R .
MATHEMATIKA, 1968, 15 (30P2) :153-&
[3]  
LIMA Y, MARSTRAND THEOREM SU
[4]  
Marstrand J., 1954, Proc. London Math. Soc., V3, P257, DOI [DOI 10.1112/PLMS/S3-4.1.257, 10.1112/plms/s3-4.1.257]
[5]   Hausdorff dimension, projections, and the Fourier transform [J].
Mattila, P .
PUBLICACIONS MATEMATIQUES, 2004, 48 (01) :3-48
[6]  
Moreira CG, 2010, ANN SCI ECOLE NORM S, V43, P1
[7]  
MOREIRA CG, DIMENSION F IN PRESS
[8]  
Moreira CGTD, 2001, ANN MATH, V154, P45
[9]   On the arithmetic sum of regular Cantor sets [J].
Palis, J ;
Yoccoz, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (04) :439-456
[10]  
Palis J, 1993, CAMBRIDGE STUDIES AD