A Real-Time FHD Learning-Based Super-Resolution System Without a Frame Buffer

被引:22
作者
Yang, Ming-Che [1 ,2 ]
Liu, Kuan-Ling [1 ,2 ]
Chien, Shao-Yi [1 ,2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
关键词
Super resolution; anchored neighborhood regression; real-time; FPGA;
D O I
10.1109/TCSII.2017.2749336
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a real-time learning-based super-resolution (SR) system without a frame buffer. The system running on an Altera Stratix IV field programmable gate array can achieve output resolution of 1920 x 1080 (FHD) at 60 fps. The proposed architecture performs an anchored neighborhood regression algorithm that generates a high-resolution image from a low-resolution image input using only numbers of line buffers. This real-time system without a frame buffer makes it possible to integrate SR operation into image sensors or display drivers carrying out computational photography and display.
引用
收藏
页码:1407 / 1411
页数:5
相关论文
共 50 条
  • [41] Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks
    Mohammad Kazem Moghimi
    Farahnaz Mohanna
    Journal of Real-Time Image Processing, 2021, 18 : 1653 - 1667
  • [42] Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks
    Moghimi, Mohammad Kazem
    Mohanna, Farahnaz
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (05) : 1653 - 1667
  • [43] Gradient information distillation network for real-time single-image super-resolution
    Meng, Bin
    Wang, Lining
    He, Zheng
    Jeon, Gwanggil
    Dou, Qingyu
    Yang, Xiaomin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (02) : 333 - 344
  • [44] A lightweight distillation recurrent convolution network on FPGA for real-time video super-resolution
    Zheng, Zhaowen
    Huang, Yuqiao
    Chen, Dihu
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [45] Gradient information distillation network for real-time single-image super-resolution
    Bin Meng
    Lining Wang
    Zheng He
    Gwanggil Jeon
    Qingyu Dou
    Xiaomin Yang
    Journal of Real-Time Image Processing, 2021, 18 : 333 - 344
  • [46] SUPER-RESOLUTION FOR REAL-TIME VOLUMETRIC MR-TEMPERATURE MONITORING
    de Senneville, B. Denis
    Hey, S.
    Moonen, C. T. W.
    Ries, M.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1684 - 1687
  • [47] A Real-Time Coprime Line Scan Super-Resolution System for Ultra-Fast Microscopy
    Shi, Runbin
    Wong, Justin S. J.
    Lam, Edmund Y.
    Tsia, Kevin K.
    So, Hayden K-H
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (04) : 781 - 792
  • [48] A learning-based POCS algorithm for face image super-resolution reconstruction
    Huang, H
    Fan, X
    Qi, C
    Zhu, SH
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 5071 - 5076
  • [49] Dual Circle Contrastive Learning-Based Blind Image Super-Resolution
    Qiu, Yajun
    Zhu, Qiang
    Zhu, Shuyuan
    Zeng, Bing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1757 - 1771
  • [50] A general residue compensation framework of learning-based face super-resolution
    Ma, Xiang
    Li, Wenmin
    Xu, Hao
    Yang, Xiaojun
    Song, Huansheng
    Ma, X. (maxiangmail@163.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09): : 4049 - 4056