Synchronization for the integer-order and fractional-order chaotic maps based on parameter estimation with JAYA-IPSO algorithm

被引:14
作者
Peng, Yuexi [1 ]
Sun, Kehui [1 ]
He, Shaobo [1 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Changsha 410083, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
TIME SYNCHRONIZATION; SYSTEMS; IDENTIFICATION; NETWORKS; MODELS;
D O I
10.1140/epjp/s13360-020-00340-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To enrich the processing means of secure communication, a novel synchronization control method is proposed based on parameter estimation technology. Unlike the traditional synchronization method, it does not need the control law and is only implemented by the parameter estimation. To realize the synchronization between two chaotic maps, a hybrid algorithm combining the JAYA algorithm with an improved particle swarm optimization (IPSO) algorithm is proposed for parameter estimation. Because there is no mathematical reasoning process, the novel method's realization is simple, and it can theoretically be utilized for synchronization of various chaotic maps. In addition, the synchronization with unknown master system structure is also studied. Numerical simulations are carried out in two classical chaotic maps and their fractional-order form. Detailed experimental results demonstrate the effectiveness of the novel synchronization control method.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Image steganalysis using improved particle swarm optimization based feature selection [J].
Adeli, Ali ;
Broumandnia, Ali .
APPLIED INTELLIGENCE, 2018, 48 (06) :1609-1622
[2]   Dynamics, Chaos Control, and Synchronization in a Fractional-Order Samardzija-Greller Population System with Order Lying in (0,2) [J].
Al-khedhairi, A. ;
Askar, S. S. ;
Matouk, A. E. ;
Elsadany, A. ;
Ghazel, M. .
COMPLEXITY, 2018,
[3]  
[Anonymous], 2016, Int J Ind Eng Comput, DOI DOI 10.5267/J.IJIEC.2015.8.004
[4]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[5]   Parameters identification for chaotic systems based on a modified Jaya algorithm [J].
Chen, Feixin ;
Ding, Zhenghao ;
Lu, Zhongrong ;
Zeng, Xiangkun .
NONLINEAR DYNAMICS, 2018, 94 (04) :2307-2326
[6]   Chaos in discrete fractional difference equations [J].
Deshpande, Amey ;
Daftardar-Gejji, Varsha .
PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (04)
[7]   Identification of fractional-order systems with unknown initial values and structure [J].
Du, Wei ;
Miao, Qingying ;
Tong, Le ;
Tang, Yang .
PHYSICS LETTERS A, 2017, 381 (23) :1943-1949
[8]   On stability of fixed points and chaos in fractional systems [J].
Edelman, Mark .
CHAOS, 2018, 28 (02)
[9]   An adaptive chaos synchronization scheme applied to secure communication [J].
Feki, M .
CHAOS SOLITONS & FRACTALS, 2003, 18 (01) :141-148
[10]   Fractional order fuzzy-PID control of a combined cycle power plant using Particle Swarm Optimization algorithm with an improved dynamic parameters selection [J].
Haji, V. Haji ;
Monje, Concepcion A. .
APPLIED SOFT COMPUTING, 2017, 58 :256-264