Over-the-Air Statistical Estimation

被引:5
|
作者
Lee, Chuan-Zheng [1 ]
Barnes, Leighton Pate [2 ]
Ozgur, Ayfer [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Federated learning; over-the-air learning; statistical estimation; CONSTRAINED DISTRIBUTED ESTIMATION; SOURCE-CHANNEL COMMUNICATION; WIRELESS SENSOR NETWORKS; UNCODED TRANSMISSION; OPTIMIZATION; COMPUTATION; DESIGN;
D O I
10.1109/JSAC.2021.3118412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study schemes and lower bounds for distributed minimax statistical estimation over a Gaussian multiple-access channel (MAC) under squared error loss. Our framework combines statistical estimation and wireless communication. First, we develop "analog" joint estimation-communication schemes that exploit the superposition property of the Gaussian MAC. We characterize their risk in terms of the number of nodes and dimension of the parameter space. Then, we derive information-theoretic lower bounds on the minimax risk of any estimation scheme that is restricted to communicate the samples over a given number of uses of the channel. This shows that the risk achieved by our proposed schemes is within a logarithmic factor of these lower bounds. We compare both achievability and lower bound results to previous "digital" lower bounds, where nodes transmit errorless bits at the Shannon capacity of the MAC. Our key finding is that analog estimation schemes that leverage the physical layer offer a drastic reduction in estimation error over digital schemes relying on a physical-layer abstraction.
引用
收藏
页码:548 / 561
页数:14
相关论文
共 50 条
  • [1] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [2] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [3] Intelligent Over-the-Air Computing Environment
    Bouzinis, Pavlos S.
    Mitsiou, Nikos A.
    Diamantoulakis, Panagiotis D.
    Tyrovolas, Dimitrios
    Karagiannidis, George K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 134 - 137
  • [4] MIMO Over-the-Air Computation for Distributed Estimation
    Park, Pangun
    Shin, Hyejeon
    Di Marco, Piergiuseppe
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [5] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [6] Over-the-Air Computation via Broadband Channels
    Qin, Tianrui
    Liu, Wanchun
    Vucetic, Branka
    Li, Yonghui
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2150 - 2154
  • [7] Digital Over-the-Air Federated Learning in Multi-Antenna Systems
    Wang, Sihua
    Chen, Mingzhe
    Shen, Cong
    Yin, Changchuan
    Brinton, Christopher G.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15125 - 15141
  • [8] Transmission Power Control for Over-the-Air Federated Averaging at Network Edge
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (05) : 1571 - 1586
  • [9] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18240 - 18253
  • [10] Over-the-Air Computation via Reconfigurable Intelligent Surface
    Fang, Wenzhi
    Jiang, Yuning
    Shi, Yuanming
    Zhou, Yong
    Chen, Wei
    Letaief, Khaled B.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8612 - 8626