Reversibility of Linear Cellular Automata on Cayley Trees with Periodic Boundary Condition

被引:2
|
作者
Chang, Chih-Hung [1 ]
Su, Jing-Yi [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 81148, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 06期
关键词
cellular automata; Cayley tree; reversibility; matrix presentation; periodic boundary condition; RULES;
D O I
10.11650/tjm/8032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While one-dimensional cellular automata have been well studied, there are relatively few results about multidimensional cellular automata; the investigation of cellular automata defined on Cayley trees constitutes an intermediate class. This paper studies the reversibility of linear cellular automata defined on Cayley trees with periodic boundary condition, where the local rule is given by f (x(0), x(1) ,..., x(d)) = bx(0) + c(1)x(1) + ... + c(d)x(d) (mod m) for some integers m; d >= 2. The reversibility problem relates to solving a polynomial derived from a recurrence relation, and an explicit formula is revealed; as an example, the complete criteria of the reversibility of linear cellular automata defined on Cayley trees over Z(2), Z(3), and some other specific case are addressed. Further, this study achieves a possible approach for determining the reversibility of multidimensional cellular automata, which is known as a undecidable problem.
引用
收藏
页码:1335 / 1353
页数:19
相关论文
共 50 条
  • [31] Structure and reversibility of 2D hexagonal cellular automata
    Siap, Irfan
    Akin, Hasan
    Uguz, Selman
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) : 4161 - 4169
  • [32] Periodic Orbits and Dynamical Complexity in Cellular Automata
    Dennunzio, Alberto
    Formenti, Enrico
    Di Lena, Pietro
    Margara, Luciano
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 183 - 199
  • [33] Strictly Temporally Periodic Points in Cellular Automata
    Dennunzio, Alberto
    Di Lena, Pietro
    Margara, Luciano
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 225 - 235
  • [34] TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA
    Liu, Weibin
    Ma, Jihua
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 579 - 592
  • [35] TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA
    刘卫斌
    马际华
    Acta Mathematica Scientia, 2016, 36 (02) : 579 - 592
  • [36] Linear cellular automata and automatic sequences
    Allouche, JP
    Von Haeseler, F
    Lange, E
    Petersen, A
    Skordev, G
    PARALLEL COMPUTING, 1997, 23 (11) : 1577 - 1592
  • [37] Dilatability to Quantum Linear Cellular Automata
    Popovici, Adriana
    Popovici, Dan
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 355 - 361
  • [38] The Topological Pressure of Linear Cellular Automata
    Ban, Jung-Chao
    Chang, Chih-Hung
    ENTROPY, 2009, 11 (02): : 271 - 284
  • [39] On the Quantitative Behavior of the Linear Cellular Automata
    Akin, Hasan
    Ban, Jung-Chao
    Chang, Chih-Hung
    JOURNAL OF CELLULAR AUTOMATA, 2013, 8 (3-4) : 205 - 231
  • [40] Weakly Periodic Gibbs Measures for HC-Models on Cayley Trees
    R. M. Khakimov
    Siberian Mathematical Journal, 2018, 59 : 147 - 156