Single R-Group Polymorphisms (SRPs) and R-Cliffs: An Intuitive Framework for Analyzing and Visualizing Activity Cliffs in a Single Analog Series

被引:23
作者
Agrafiotis, Dimitris K. [1 ]
Wiener, John J. M. [2 ]
Skalkin, Andrew [1 ]
Kolpak, Jeremy [1 ]
机构
[1] Johnson & Johnson Pharmaceut Res & Dev LLC, Informat, Spring House, PA 19477 USA
[2] Johnson & Johnson Pharmaceut Res & Dev LLC, Med Chem, San Diego, CA 92121 USA
关键词
CATHEPSIN-S; QSAR; SAR; DETERMINANTS; PROTEOLYSIS; INHIBITORS; DISCOVERY; SELECTION; TARGET;
D O I
10.1021/ci200054u
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We introduce Single R-Group Polymorphisms (SRPs, pronounced 'sharps'), an intuitive framework for analyzing substituent effects and activity cliffs in a single congeneric series. A SRP is a pair of compounds that differ only in a single R-group position. Because the same substituent pair may occur in multiple SRPs in the series (i.e., with different combinations of substituents at the other R-group positions), SRP analysis makes it easy to identify systematic substituent effects and activity cliffs at each point of variation SRPs can be visualized as a symmetric heatmap where each cell represents a particular pair of substituents color-coded by the average difference in activity between the compounds that contain that particular SRP. SRP maps offer several advantages over existing techniques for visualizing activity cliffs: 1) the chemical structures of all the substituents are displayed simultaneously on a single map, thus directly engaging the pattern recognition abilities of the medicinal chemist; 2) it is based on R-group decomposition, a natural paradigm for generating and rationalizing SAR; 3) it uses a heatmap representation that makes it easy to identify systematic trends in the data; 4) it generalizes the concept of activity cliffs beyond similarity by allowing the analyst to sort the substituents according to any property of interest or place them manually in any desired order.
引用
收藏
页码:1122 / 1131
页数:10
相关论文
共 51 条
  • [1] SAR maps: A new SAR visualization technique for medicinal chemists
    Agrafiotis, Dimitris K.
    Shemanarev, Maxim
    Connolly, Peter J.
    Farnum, Michael
    Lobanov, Victor S.
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2007, 50 (24) : 5926 - 5937
  • [2] Advanced biological and chemical discovery (ABCD): Centralizing discovery knowledge in an inherently decentralized world
    Agrafiotis, Dimitris K.
    Alex, Simson
    Dai, Heng
    Derkinderen, An
    Farnum, Michael
    Gates, Peter
    Izrailev, Sergei
    Jaeger, Edward P.
    Konstant, Paul
    Leung, Albert
    Lobanov, Victor S.
    Marichal, Patrick
    Martin, Douglas
    Rassokhin, Dmitrii N.
    Shemanarev, Maxim
    Skalkin, Andrew
    Stong, John
    Tabruyn, Tom
    Vermeiren, Marleen
    Wan, Jackson
    Xu, Xiang Yang
    Yao, Xiang
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (06) : 1999 - 2014
  • [3] Scaffold Explorer: An Interactive Tool for Organizing and Mining Structure-Activity Data Spanning Multiple Chemotypes
    Agrafiotis, Dimitris K.
    Wiener, John J. M.
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (13) : 5002 - 5011
  • [4] A self-organizing principle for learning nonlinear manifolds
    Agrafiotis, DK
    Xu, HF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) : 15869 - 15872
  • [5] Stochastic proximity embedding
    Agrafiotis, DK
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (10) : 1215 - 1221
  • [6] A geodesic framework for analyzing molecular similarities
    Agrafiotis, DK
    Xu, HF
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (02): : 475 - 484
  • [7] Feature selection for structure-activity correlation using binary particle swarms
    Agrafiotis, DK
    Cedeño, W
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (05) : 1098 - 1107
  • [8] On the use of neural network ensembles in QSAR and QSPR
    Agrafiotis, DK
    Cedeño, W
    Lobanov, VS
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (04): : 903 - 911
  • [9] Allen D., 2009, Patent, Patent No. [US2009/0118274, 20090118274]
  • [10] Ameriks M. K., 2008, U.S. Pat. Appl. Publ., Patent No. [US 20,080,200,454 A1 20,080,821, 20080200454]