SPRINT: an SNP-free toolkit for identifying RNA editing sites

被引:70
作者
Zhang, Feng [1 ,2 ,3 ]
Lu, Yulan [4 ]
Yan, Sijia [5 ,6 ]
Xing, Qinghe [5 ,6 ]
Tian, Weidong [1 ,2 ,3 ,5 ]
机构
[1] Fudan Univ, State Key Lab Genet Engn, Shanghai 200436, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Genet & Dev, Shanghai 200436, Peoples R China
[3] Fudan Univ, Sch Life Sci, Dept Biostat & Computat Biol, Shanghai 200436, Peoples R China
[4] Fudan Univ, Pediat Res Inst, Translat Med Res Ctr Children Dev & Dis, Mol Genet Diag Ctr,Shanghai Key Lab Birth Defect, Shanghai 201102, Peoples R China
[5] Fudan Univ, Childrens Hosp, Shanghai 201102, Peoples R China
[6] Fudan Univ, Inst Biomed Sci, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
LARGE GENE LISTS; ACCURATE IDENTIFICATION; HUMAN TRANSCRIPTOME; BETA-TRCP; SEQUENCE; DEGRADATION; LANDSCAPE; DIVERSITY; ALIGNMENT; DISEASE;
D O I
10.1093/bioinformatics/btx473
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA editing generates post-transcriptional sequence alterations. Detection of RNA editing sites (RESs) typically requires the filtering of SNVs called from RNA-seq data using an SNP database, an obstacle that is difficult to overcome for most organisms. Here, we present a novel method named SPRINT that identifies RESs without the need to filter out SNPs. SPRINT also integrates the detection of hyper RESs from remapped reads, and has been fully automated to any RNA-seq data with reference genome sequence available. We have rigorously validated SPRINT's effectiveness in detecting RESs using RNA-seq data of samples in which genes encoding RNA editing enzymes are knock down or over-expressed, and have also demonstrated its superiority over current methods. We have applied SPRINT to investigate RNA editing across tissues and species, and also in the development of mouse embryonic central nervous system. A web resource (http://sprint.tianlab.cn) of RESs identified by SPRINT has been constructed.
引用
收藏
页码:3538 / 3548
页数:11
相关论文
共 55 条
  • [11] Principles Governing A-to-I RNA Editing in the Breast Cancer Transcriptome
    Fumagalli, Debora
    Gacquer, David
    Rothe, Francoise
    Lefort, Anne
    Libert, Frederick
    Brown, David
    Kheddoumi, Naima
    Shlien, Adam
    Konopka, Tomasz
    Salgado, Roberto
    Larsimont, Denis
    Polyak, Kornelia
    Willard-Gallo, Karen
    Desmedt, Christine
    Piccart, Martine
    Abramowicz, Marc
    Campbell, Peter J.
    Sotiriou, Christos
    Detours, Vincent
    [J]. CELL REPORTS, 2015, 13 (02): : 277 - 289
  • [12] Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer's disease
    Gaisler-Salomon, Inna
    Kravitz, Efrat
    Feiler, Yulia
    Safran, Michal
    Biegon, Anat
    Amariglio, Ninette
    Rechavi, Gideon
    [J]. NEUROBIOLOGY OF AGING, 2014, 35 (08) : 1785 - 1791
  • [13] The origin of the ADAR gene family and animal RNA editing
    Grice, Laura F.
    Degnan, Bernard M.
    [J]. BMC EVOLUTIONARY BIOLOGY, 2015, 15
  • [14] The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers
    Han, Leng
    Diao, Lixia
    Yu, Shuangxing
    Xu, Xiaoyan
    Li, Jie
    Zhang, Rui
    Yang, Yang
    Werner, Henrica M. J.
    Eterovic, A. Karina
    Yuan, Yuan
    Li, Jun
    Nair, Nikitha
    Minelli, Rosalba
    Tsang, Yiu Huen
    Cheung, Lydia W. T.
    Jeong, Kang Jin
    Roszik, Jason
    Ju, Zhenlin
    Woodman, Scott E.
    Lu, Yiling
    Scott, Kenneth L.
    Li, Jin Billy
    Mills, Gordon B.
    Liang, Han
    [J]. CANCER CELL, 2015, 28 (04) : 515 - 528
  • [15] Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons
    Hideyama, Takuto
    Yamashita, Takenari
    Aizawa, Hitoshi
    Tsuji, Shoji
    Kakita, Akiyoshi
    Takahashi, Hitoshi
    Kwak, Shin
    [J]. NEUROBIOLOGY OF DISEASE, 2012, 45 (03) : 1121 - 1128
  • [16] Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    Huang, Da Wei
    Sherman, Brad T.
    Lempicki, Richard A.
    [J]. NATURE PROTOCOLS, 2009, 4 (01) : 44 - 57
  • [17] Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
    Huang, Da Wei
    Sherman, Brad T.
    Lempicki, Richard A.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (01) : 1 - 13
  • [18] SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase
    Jin, JP
    Shirogane, T
    Xu, L
    Nalepa, G
    Qin, J
    Elledge, SJ
    Harper, JW
    [J]. GENES & DEVELOPMENT, 2003, 17 (24) : 3062 - 3074
  • [19] RNAEditor: easy detection of RNA editing events and the introduction of editing islands
    John, David
    Weirick, Tyler
    Dimmeler, Stefanie
    Uchida, Shizuka
    [J]. BRIEFINGS IN BIOINFORMATICS, 2017, 18 (06) : 993 - 1001
  • [20] TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    Kim, Daehwan
    Pertea, Geo
    Trapnell, Cole
    Pimentel, Harold
    Kelley, Ryan
    Salzberg, Steven L.
    [J]. GENOME BIOLOGY, 2013, 14 (04):