Determining the optimal ridge parameter in logistic regression

被引:0
作者
Phrueksawatnon, Piyada [1 ]
Jitthavech, Jirawan [1 ]
Lorchirachoonkul, Vichit [1 ]
机构
[1] Natl Inst Dev Adm, Sch Appl Stat, 118 Serithai Rd, Bangkok 10240, Thailand
关键词
Bounds of the ridge parameter; Efficiency; Logistic regression; Multicollinearity; Simulation; BIASED-ESTIMATION;
D O I
10.1080/03610918.2019.1626890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A closed interval based on the eigenvalues of the explanatory variables in the dataset is analytically derived to contain the ridge parameter that minimizes the mean squared error (MSE) of the coefficient estimators in a logistic regression model. After specifying the required accuracy, a Fibonacci search can efficiently locate the optimal ridge parameter within such a closed interval. Based on a simulation comprising 2,000 replications of three sample sizes (100, 200, and 1,000) from a logistic regression model consisting of two correlated variables with correlation coefficients of 0.90, 0.95, and 0.99, and one independent variable, it is confirmed that, using the true mean squared error criterion, the relative efficiency of the estimator with the optimal ridge parameter is clearly higher than those of estimators using six commonly used ridge estimators. Finally, using a real-life data set of small size and changing the criterion to the asymptotic mean squared error, comparisons with the same six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is better than or equal to others.
引用
收藏
页码:3569 / 3580
页数:12
相关论文
共 50 条
  • [41] Decision support for selecting optimal logistic regression models
    van der Heijden, Hans
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8573 - 8583
  • [42] Two parameter Ridge estimator in the inverse Gaussian regression model
    Bulut, Y. Murat
    Isilar, Melike
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 895 - 910
  • [43] Logistic Regression Parameter Estimation Based on Parallel Matrix Computation
    Liu, Zhen
    Liu, Meng
    THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, 2011, 164 : 268 - 275
  • [44] Comparing ordinary ridge and generalized ridge regression results obtained using genetic algorithms for ridge parameter selection
    Ndabashinze, Barnabe
    Siray, Gulesen Ustundag
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6159 - 6169
  • [45] Developing ridge estimation method for median regression
    Zeebari, Zangin
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (12) : 2627 - 2638
  • [46] A first-order approximated jackknifed ridge estimator in binary logistic regression
    Ozkale, M. Revan
    Arican, Engin
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 683 - 712
  • [47] The Effect of High Leverage Points on the Logistic Ridge Regression Estimator Having Multicollinearity
    Ariffin, Syaiba Balqish
    Midi, Habshah
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 1105 - 1111
  • [48] A sparse version of the ridge logistic regression for large-scale text categorization
    Aseervatham, Sujeevan
    Antoniadis, Anestis
    Gaussier, Eric
    Burlet, Michel
    Denneulin, Yves
    PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 101 - 106
  • [49] A first-order approximated jackknifed ridge estimator in binary logistic regression
    M. Revan Özkale
    Engin Arıcan
    Computational Statistics, 2019, 34 : 683 - 712
  • [50] A new robust ridge parameter estimator having no outlier and ensuring normality for linear regression model
    Mermi, Selman
    Akkus, Ozge
    Goktas, Atila
    Gunduz, Necla
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (01)