Determining the optimal ridge parameter in logistic regression

被引:0
|
作者
Phrueksawatnon, Piyada [1 ]
Jitthavech, Jirawan [1 ]
Lorchirachoonkul, Vichit [1 ]
机构
[1] Natl Inst Dev Adm, Sch Appl Stat, 118 Serithai Rd, Bangkok 10240, Thailand
关键词
Bounds of the ridge parameter; Efficiency; Logistic regression; Multicollinearity; Simulation; BIASED-ESTIMATION;
D O I
10.1080/03610918.2019.1626890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A closed interval based on the eigenvalues of the explanatory variables in the dataset is analytically derived to contain the ridge parameter that minimizes the mean squared error (MSE) of the coefficient estimators in a logistic regression model. After specifying the required accuracy, a Fibonacci search can efficiently locate the optimal ridge parameter within such a closed interval. Based on a simulation comprising 2,000 replications of three sample sizes (100, 200, and 1,000) from a logistic regression model consisting of two correlated variables with correlation coefficients of 0.90, 0.95, and 0.99, and one independent variable, it is confirmed that, using the true mean squared error criterion, the relative efficiency of the estimator with the optimal ridge parameter is clearly higher than those of estimators using six commonly used ridge estimators. Finally, using a real-life data set of small size and changing the criterion to the asymptotic mean squared error, comparisons with the same six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is better than or equal to others.
引用
收藏
页码:3569 / 3580
页数:12
相关论文
共 50 条
  • [31] Infinite parameter estimates in logistic regression: Opportunities, not problems
    Rindskopf, D
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2002, 27 (02) : 147 - 161
  • [32] A variational method for parameter estimation in a logistic spatial regression
    Hardouin, Cecile
    SPATIAL STATISTICS, 2019, 31
  • [33] Regularization Parameter Tuning Optimization Approach in Logistic Regression
    El-Koka, Ahmed
    Era, Kyung-Hwan
    Kang, Dae-Ki
    2013 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2013, : 13 - 18
  • [34] Performance of Some New Ridge Parameters in Two-Parameter Ridge Regression Model
    Yasin, Seyab
    Kamal, Shahid
    Suhail, Muhammad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (01): : 327 - 341
  • [35] Performance of Some New Ridge Parameters in Two-Parameter Ridge Regression Model
    Seyab Yasin
    Shahid Kamal
    Muhammad Suhail
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 327 - 341
  • [36] A new robust ridge parameter estimator based on search method for linear regression model
    Goktas, Atila
    Akkus, Ozge
    Kuvat, Aykut
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2457 - 2472
  • [37] Optimal crossover designs for logistic regression models in pharmacodynamics
    Waterhouse, T. H.
    Eccleston, J. A.
    Duffull, S. B.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2006, 16 (06) : 881 - 894
  • [38] Bayesian ridge estimators based on copula-based joint prior distributions for logistic regression parameters
    Aizawa, Yuto
    Emura, Takeshi
    Michimae, Hirofumi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (01) : 252 - 266
  • [39] Logistic regression-based optimal control for air-cooled chiller
    Yu, F. W.
    Ho, W. T.
    Chan, K. T.
    Sit, R. K. Y.
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2018, 85 : 200 - 212
  • [40] More Efficient Estimation for Logistic Regression with Optimal Subsamples
    Wang, HaiYing
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20