Determining the optimal ridge parameter in logistic regression

被引:0
|
作者
Phrueksawatnon, Piyada [1 ]
Jitthavech, Jirawan [1 ]
Lorchirachoonkul, Vichit [1 ]
机构
[1] Natl Inst Dev Adm, Sch Appl Stat, 118 Serithai Rd, Bangkok 10240, Thailand
关键词
Bounds of the ridge parameter; Efficiency; Logistic regression; Multicollinearity; Simulation; BIASED-ESTIMATION;
D O I
10.1080/03610918.2019.1626890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A closed interval based on the eigenvalues of the explanatory variables in the dataset is analytically derived to contain the ridge parameter that minimizes the mean squared error (MSE) of the coefficient estimators in a logistic regression model. After specifying the required accuracy, a Fibonacci search can efficiently locate the optimal ridge parameter within such a closed interval. Based on a simulation comprising 2,000 replications of three sample sizes (100, 200, and 1,000) from a logistic regression model consisting of two correlated variables with correlation coefficients of 0.90, 0.95, and 0.99, and one independent variable, it is confirmed that, using the true mean squared error criterion, the relative efficiency of the estimator with the optimal ridge parameter is clearly higher than those of estimators using six commonly used ridge estimators. Finally, using a real-life data set of small size and changing the criterion to the asymptotic mean squared error, comparisons with the same six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is better than or equal to others.
引用
收藏
页码:3569 / 3580
页数:12
相关论文
共 50 条
  • [21] Bayesian estimation of the shrinkage parameter in ridge regression
    Firinguetti-Limone, Luis
    Pereira-Barahona, Manuel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3314 - 3327
  • [22] Robust logistic regression with shift parameter estimation
    Shin, Bokyoung
    Lee, Seokho
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2625 - 2641
  • [23] A note on D-optimal designs for a logistic regression model
    Sebastiani, P
    Settimi, R
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 59 (02) : 359 - 368
  • [24] Two-parameter ridge estimation in seemingly unrelated regression models
    Esfanjani, Robab Mehdizadeh
    Najarzadeh, Dariush
    Khamnei, Hossein Jabbari
    Hormozinejad, Farshin
    Talebi, Mahnaz
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 4904 - 4918
  • [25] Liu-Type Logistic Estimators with Optimal Shrinkage Parameter
    Asar, Yasin
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 738 - 751
  • [26] On the Almost Unbiased Ridge and Liu Estimator in the Logistic Regression Model
    Chang, Xinfeng
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE, EDUCATION MANAGEMENT AND SPORTS EDUCATION, 2015, 39 : 1663 - 1665
  • [27] Proposed methods in estimating the ridge regression parameter in Poisson regression model
    Alanaz, Mazin M.
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) : 506 - 515
  • [28] New ridge parameter estimators for the quasi-Poisson ridge regression model
    Shahzad, Aamir
    Amin, Muhammad
    Emam, Walid
    Faisal, Muhammad
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [29] TWO PARAMETER RIDGE ESTIMATOR FOR THE BELL REGRESSION MODEL
    Melike, Isilar
    Y. Murat, Bulut
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 712 - 723
  • [30] Optimal Subsampling for Large Sample Logistic Regression
    Wang, HaiYing
    Zhu, Rong
    Ma, Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 829 - 844