Determining the optimal ridge parameter in logistic regression

被引:0
|
作者
Phrueksawatnon, Piyada [1 ]
Jitthavech, Jirawan [1 ]
Lorchirachoonkul, Vichit [1 ]
机构
[1] Natl Inst Dev Adm, Sch Appl Stat, 118 Serithai Rd, Bangkok 10240, Thailand
关键词
Bounds of the ridge parameter; Efficiency; Logistic regression; Multicollinearity; Simulation; BIASED-ESTIMATION;
D O I
10.1080/03610918.2019.1626890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A closed interval based on the eigenvalues of the explanatory variables in the dataset is analytically derived to contain the ridge parameter that minimizes the mean squared error (MSE) of the coefficient estimators in a logistic regression model. After specifying the required accuracy, a Fibonacci search can efficiently locate the optimal ridge parameter within such a closed interval. Based on a simulation comprising 2,000 replications of three sample sizes (100, 200, and 1,000) from a logistic regression model consisting of two correlated variables with correlation coefficients of 0.90, 0.95, and 0.99, and one independent variable, it is confirmed that, using the true mean squared error criterion, the relative efficiency of the estimator with the optimal ridge parameter is clearly higher than those of estimators using six commonly used ridge estimators. Finally, using a real-life data set of small size and changing the criterion to the asymptotic mean squared error, comparisons with the same six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is better than or equal to others.
引用
收藏
页码:3569 / 3580
页数:12
相关论文
共 50 条
  • [1] Two-parameter ridge estimator in the binary logistic regression
    Asar, Yasin
    Genc, Asir
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 7088 - 7099
  • [2] Logistic regression diagnostics in ridge regression
    M. Revan Özkale
    Stanley Lemeshow
    Rodney Sturdivant
    Computational Statistics, 2018, 33 : 563 - 593
  • [3] Logistic regression diagnostics in ridge regression
    Ozkale, M. Revan
    Lemeshow, Stanley
    Sturdivant, Rodney
    COMPUTATIONAL STATISTICS, 2018, 33 (02) : 563 - 593
  • [4] On Ridge Parameters in Logistic Regression
    Mansson, Kristofer
    Shukur, Ghazi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (18) : 3366 - 3381
  • [5] Improved ridge regression estimators for the logistic regression model
    Saleh, A. K. Md. E.
    Kibria, B. M. Golam
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2519 - 2558
  • [6] Performance of Some Logistic Ridge Regression Estimators
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    COMPUTATIONAL ECONOMICS, 2012, 40 (04) : 401 - 414
  • [7] Performance of Some Logistic Ridge Regression Estimators
    B. M. Golam Kibria
    Kristofer Månsson
    Ghazi Shukur
    Computational Economics, 2012, 40 : 401 - 414
  • [8] RIDGE ESTIMATORS IN LOGISTIC-REGRESSION
    LECESSIE, S
    VANHOUWELINGEN, JC
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1992, 41 (01): : 191 - 201
  • [9] Comparison of link functions for the estimation of logistic ridge regression: an application to urine data
    Hadia, Mehmoona
    Amin, Muhammad
    Akram, Muhammad Nauman
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4121 - 4137
  • [10] Improved ridge regression estimators for the logistic regression model
    A. K. Md. E. Saleh
    B. M. Golam Kibria
    Computational Statistics, 2013, 28 : 2519 - 2558