Clustering of solutions in the random satisfiability problem -: art. no. 197205

被引:107
作者
Mézard, M
Mora, T
Zecchina, R
机构
[1] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
关键词
D O I
10.1103/PhysRevLett.94.197205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using elementary rigorous methods we prove the existence of a clustered phase in the random K-SAT problem, for K >= 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.
引用
收藏
页数:4
相关论文
共 31 条
[1]   The threshold for random k-SAT is 2k log 2-O(k) [J].
Achlioptas, D ;
Peres, Y .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :947-973
[2]  
ACHLIOPTAS D, 2002, P FDN COMP SCI
[3]  
BARRE J, IN PRESS PHYS REV LE
[4]   Polynomial iterative algorithms for coloring and analyzing random graphs [J].
Braunstein, A ;
Mulet, R ;
Pagnani, A ;
Weigt, M ;
Zecchina, R .
PHYSICAL REVIEW E, 2003, 68 (03) :15
[5]  
CHAO MT, 1990, INFORM SCIENCES, V51, P289, DOI 10.1016/0020-0255(90)90030-E
[6]   Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices [J].
Cocco, S ;
Dubois, O ;
Mandler, J ;
Monasson, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4-472054
[7]  
Cook S.A., 1971, P 3 ANN ACM S THEOR, P151, DOI DOI 10.1145/800157.805047
[8]   A general upper bound for the satisfiability threshold of random r-SAT formulae [J].
Dubois, O ;
Boufkhad, Y .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1997, 24 (02) :395-420
[9]  
Dubois O, 2001, THEOR COMPUT SCI, V265, P1, DOI 10.1016/S0304-3975(01)00133-5
[10]   Sharp thresholds of graph properties, and the k-sat problem [J].
Friedgut, E .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1017-1054