Electrostatic self-assembly of virus-polymer complexes

被引:61
|
作者
Kostiainen, Mauri A. [1 ]
Hiekkataipale, Panu [2 ]
de la Torre, Jose A. [1 ]
Nolte, Roeland J. M. [1 ]
Cornelissen, Jeroen J. L. M. [3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Aalto Univ, Dept Appl Phys, FI-02150 Espoo, Finland
[3] Univ Twente, MESA Inst Nanotechnol, Lab Biomol Nanotechnol, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会; 芬兰科学院;
关键词
DNA-BINDING; MULTIVALENT RECOGNITION; DEGRADABLE DENDRONS; PROTEIN; BIONANOPARTICLES; EQUILIBRIUM; MICROBICIDE; PREVENTION; PARTICLES; ADHESION;
D O I
10.1039/c0jm02592e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amine functionalised and consequently cationic linear polymers, Newkome-type dendrons and PAMAM dendrimers can efficiently form electrostatic complexes with negatively charged cowpea chlorotic mottle viruses (CCMVs). The complexes have been characterised by dynamic light scattering (DLS), gel electrophoresis, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), which describe in detail how the size and structure topology of the polyamine controls the complex formation with the virus. DLS results show that the complexes are approximately 1 2 mu m in diameter, and their size can be tuned with the charge valency of the polymer and the ionic concentration of the media. TEM images and SAXS measurements demonstrate that individual virus particles can adopt hexagonal close packing within the complex and the observed distance between lattice points (27.9 nm) corresponds to the diameter of the native virus, which is 28 nm. Also the empty viral capsids and capsids loaded with Prussian blue nanoparticles can be assembled, which suggests that by controlling the assembly of the virus, it is possible to control the assembly of any material that is held inside the virus.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 50 条
  • [21] The effect of RNA stiffness on the self-assembly of virus particles
    Li, Siyu
    Erdemci-Tandogan, Gonca
    van der Schoot, Paul
    Zandi, Roya
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (04)
  • [22] Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly
    Baschek, Johanna E.
    Klein, Heinrich C. R.
    Schwarz, Ulrich S.
    BMC BIOPHYSICS, 2012, 5
  • [23] Self-assembly of protein-polymer conjugates for drug delivery
    Stevens, Corey. A.
    Kaur, Kuljeet
    Klok, Harm-Anton
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 174 : 447 - 460
  • [24] Thermally Reversible Self-Assembly of Nanoparticles via Polymer Crystallization
    Kinnear, Calum
    Balog, Sandor
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (23) : 2012 - 2017
  • [25] Self-Assembly of Rice Bran Globulin Fibrils in Electrostatic Screening: Nanostructure and Gels
    Huang, Lihua
    Zhang, Yehui
    Li, Haibin
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [26] Electrostatic Self-Assembly of Soft Matter Nanoparticle Cocrystals with Tunable Lattice Parameters
    Liljestrom, Ville
    Seitsonen, Jani
    Kostiainen, Mauri A.
    ACS NANO, 2015, 9 (11) : 11278 - 11285
  • [27] Self-Assembly of Pillars Modified with Vapor Deposited Polymer Coatings
    Chen, Benny
    Seidel, Scott
    Hori, Hiroki
    Gupta, Malancha
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (11) : 4201 - 4205
  • [28] A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles
    Chen, Kui
    Bao, Meimei
    Bonilla, Alexandra Munoz
    Zhang, Weidong
    Chen, Gaojian
    POLYMER CHEMISTRY, 2016, 7 (14) : 2565 - 2572
  • [29] Microfluidic enhancement of self-assembly systems
    Khoeini, Davood
    Scott, Timothy F.
    Neild, Adrian
    LAB ON A CHIP, 2021, 21 (09) : 1661 - 1675
  • [30] Self-assembly of charged colloidal cubes
    Rosenberg, Margaret
    Dekker, Frans
    Donaldson, Joe G.
    Philipse, Albert P.
    Kantorovich, Sofia S.
    SOFT MATTER, 2020, 16 (18) : 4451 - 4461