Electrostatic self-assembly of virus-polymer complexes

被引:61
|
作者
Kostiainen, Mauri A. [1 ]
Hiekkataipale, Panu [2 ]
de la Torre, Jose A. [1 ]
Nolte, Roeland J. M. [1 ]
Cornelissen, Jeroen J. L. M. [3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Aalto Univ, Dept Appl Phys, FI-02150 Espoo, Finland
[3] Univ Twente, MESA Inst Nanotechnol, Lab Biomol Nanotechnol, NL-7500 AE Enschede, Netherlands
基金
芬兰科学院; 欧洲研究理事会;
关键词
DNA-BINDING; MULTIVALENT RECOGNITION; DEGRADABLE DENDRONS; PROTEIN; BIONANOPARTICLES; EQUILIBRIUM; MICROBICIDE; PREVENTION; PARTICLES; ADHESION;
D O I
10.1039/c0jm02592e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amine functionalised and consequently cationic linear polymers, Newkome-type dendrons and PAMAM dendrimers can efficiently form electrostatic complexes with negatively charged cowpea chlorotic mottle viruses (CCMVs). The complexes have been characterised by dynamic light scattering (DLS), gel electrophoresis, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), which describe in detail how the size and structure topology of the polyamine controls the complex formation with the virus. DLS results show that the complexes are approximately 1 2 mu m in diameter, and their size can be tuned with the charge valency of the polymer and the ionic concentration of the media. TEM images and SAXS measurements demonstrate that individual virus particles can adopt hexagonal close packing within the complex and the observed distance between lattice points (27.9 nm) corresponds to the diameter of the native virus, which is 28 nm. Also the empty viral capsids and capsids loaded with Prussian blue nanoparticles can be assembled, which suggests that by controlling the assembly of the virus, it is possible to control the assembly of any material that is held inside the virus.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 50 条
  • [1] Temperature-Switchable Assembly of Supramolecular Virus-Polymer Complexes
    Kostiainen, Mauri A.
    Pietsch, Christian
    Hoogenboom, Richard
    Nolte, Roeland J. M.
    Cornelissen, Jeroen J. L. M.
    ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (11) : 2012 - 2019
  • [3] Polymer clay self-assembly complexes on paper
    Ou, Runqing
    Zhang, Jianguo
    Deng, Yulin
    Ragauskas, Arthur J.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (04) : 1987 - 1992
  • [4] Designing polymer topology by electrostatic self-assembly and covalent fixation
    Tezuka, Y
    Oike, H
    MACROMOLECULAR SYMPOSIA, 2000, 161 : 159 - 167
  • [5] Topological polymer chemistry by dynamic selection from electrostatic polymer self-assembly
    Tezuka, Y
    CHEMICAL RECORD, 2005, 5 (01): : 17 - 26
  • [6] Cyclic Peptide-Polymer Complexes and Their Self-Assembly
    Belanger, Dominique
    Tong, Xia
    Soumare, Sadia
    Dory, Yves L.
    Zhao, Yue
    CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (17) : 4428 - 4436
  • [7] Electrostatic effects on self-assembly in protein-polymer block copolymers
    Olsen, Bradley
    Chang, Dongsook
    Lam, Christopher
    Mills, Carolyn
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [8] Piezoelectric ultrathin polymer films synthesized by electrostatic self-assembly processing
    Zeng, T
    Claus, R
    Liu, Y
    Zhang, F
    Du, W
    Cooper, KL
    SMART MATERIALS & STRUCTURES, 2000, 9 (06): : 801 - 804
  • [9] Designing unusual polymer topologies by electrostatic self-assembly and covalent fixation
    Oike, H
    Imaizumi, H
    Mouri, T
    Yoshioka, Y
    Uchibori, A
    Tezuka, Y
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) : 9592 - 9599
  • [10] Control over the electrostatic self-assembly of nanoparticle semiflexible biopolyelectrolyte complexes
    Shi, Li
    Carn, Florent
    Boue, Francois
    Mosser, Gervaise
    Buhler, Eric
    SOFT MATTER, 2013, 9 (20) : 5004 - 5015