The zero-Hopf bifurcations of a four-dimensional hyperchaotic system

被引:5
作者
Llibre, Jaume [1 ]
Tian, Yuzhou [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
LORENZ SYSTEM; PROJECTIVE SYNCHRONIZATION; GLOBAL DYNAMICS;
D O I
10.1063/5.0023155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the four-dimensional hyperchaotic system (x)over dot=a(y-x), (y)ovedr dot=bx+u-y-xz, (z)over dot=xy-cz, and u?=-du-jx+exz, where a, b, c, d, j, and e are real parameters. This system extends the famous Lorenz system to four dimensions and was introduced in Zhou et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, 1750021 (2017). We characterize the values of the parameters for which their equilibrium points are zero-Hopf points. Using the averaging theory, we obtain sufficient conditions for the existence of periodic orbits bifurcating from these zero-Hopf equilibria and give some examples to illustrate the conclusions. Moreover, the stability conditions of these periodic orbits are given using the Routh-Hurwitz criterion. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 39 条