The application of similarity theory for heat transfer investigation in rotational internal cooling channel

被引:11
|
作者
Xu, Guoqiang [1 ,2 ]
Li, Yang [1 ,2 ]
Deng, Hongwu [1 ,2 ]
Li, Haiwang [1 ,2 ]
Yu, Xiao [3 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China
[3] Aviation Ind Corp China, Shenyang Aeroengine Design & Res Inst, Shenyang 110015, Peoples R China
关键词
Similarity theory; Heat transfer; Rotating channel; Dissimilar radius; Scaled-up channel; 2-PASS SQUARE CHANNEL; SERPENTINE PASSAGES; SMOOTH; PREDICTION; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2015.01.108
中图分类号
O414.1 [热力学];
学科分类号
摘要
Full-scale test for turbine blade internal cooling is difficult for laboratory researches. The original turbine blade channel is always proportionally scaled up to laboratory-scale channel, as well as its hydraulic diameter and rotating radius. But the proportion scale of radius is too large for any rotating rig to operate the test, and thus the insufficient rotating radius causes incomplete similarity application. Because of the dissimilar radius induced incomplete similarity, heat transfer results obtained in laboratory-scale channel cannot be directly used by actual turbine blade design process. Therefore, this paper deals with this problem and numerically studies the influence of incomplete similarity through a rotating square channel with smooth walls and radially outward flow. Dimensionless parameters analysis demonstrates that the radius ratio (RID) only shows influence on the buoyancy number (Buo) which causes much smaller buoyancy number for dissimilar model. Thus, three models with various scales and rotating radius are built. Model 1 is the original channel simplified from actual turbine blade internal cooling channel; Model 2 (similar model) and Model 3 (experimental model) are the corresponding scaled-up channels from Model 1 with complete similar radius and insufficient radius respectively. And two correction methods (variable radius and variable wall temperature) are developed to revise the influence caused by incomplete similarity of Model 3. Variable radius is used to vary rotating radius and variable wall temperature is used to vary wall temperature. The simulation is completed using commercial CFD solver and k-omega turbulent model. Result shows that the conventional application of similarity theory can predict heat transfer well for complete similar model (Model 2), but with a large deviation for dissimilar model (Mode 3). Given the same Re and Ro, the smaller Buo in Model 3 causes over 17% deviation heat transfer result. Then, the two revised methods concerning the effect of rotational radius ratio and wall temperature ratio are detailedly discussed, and both of them show less than 3% deviation in heat transfer distribution results. The detailed revised steps are also provided for both methods. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [1] Effect of bleed hole on internal flow and heat transfer in matrix cooling channel
    Sun, Haiou
    Sun, Tao
    Yang, Lianfeng
    Bu, Shi
    Luan, Yigang
    APPLIED THERMAL ENGINEERING, 2018, 136 : 419 - 430
  • [2] HEAT TRANSFER ENHANCEMENT FOR TURBINE BLADE INTERNAL COOLING
    Wright, Lesley M.
    Han, Je-Chin
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 3, 2014,
  • [3] HEAT TRANSFER ENHANCEMENT FOR TURBINE BLADE INTERNAL COOLING
    Wright, Lesley M.
    Han, Je-Chin
    JOURNAL OF ENHANCED HEAT TRANSFER, 2014, 21 (2-3) : 111 - 140
  • [4] Rotational heat transfer in a rectangular cooling channel with compound turbulators of pin-fins and dimples
    Chen, Yanan
    Xu, Guoqiang
    Wen, Jie
    Zhu, Chenghua
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 184
  • [5] Heat Transfer in Internal Channel of a Blade:Effects of Rotation in a Trailing Edge Cooling System
    Luca Andrei
    Antonio Andreini
    Leonardo Bonanni
    Bruno Facchini
    JournalofThermalScience, 2012, 21 (03) : 236 - 249
  • [6] Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system
    Luca Andrei
    Antonio Andreini
    Leonardo Bonanni
    Bruno Facchini
    Journal of Thermal Science, 2012, 21 : 236 - 249
  • [7] Heat Transfer in Internal Channel of a Blade: Effects of Rotation in a Trailing Edge Cooling System
    Andrei, Luca
    Andreini, Antonio
    Bonanni, Leonardo
    Facchini, Bruno
    JOURNAL OF THERMAL SCIENCE, 2012, 21 (03) : 236 - 249
  • [8] Numerical investigation on two-phase oscillating flow and heat transfer enhancement for a cooling channel with ribs
    Xie, Guangyi
    Lei, Jilin
    Deng, Xiwen
    Wang, Jinkun
    Chen, Hao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 187
  • [9] Experimental investigation of the heat transfer characteristics and thermal performance inside a ribbed serpentine channel during rotational effects
    Kaewchoothong, Natthaporn
    Narato, Pathomporn
    Nuntadusit, Chayut
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2020, 111
  • [10] Experimental Investigation of Heat Transfer on the Internal Tip Wall in a Rotating Two-Pass Rectangular Channel
    Chia, Kai-Chieh
    Huang, Szu-Chi
    Liu, Yao-Hsien
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2021, 13 (01)