Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields

被引:0
作者
Kopparty, Swastik [1 ,2 ]
Kumar, Mrinal [1 ]
Saks, Michael [2 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
来源
AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I | 2014年 / 8572卷
基金
美国国家科学基金会;
关键词
GENERATING NECKLACES; LYNDON WORDS; ALGORITHM; COLORS; BEADS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of indexing necklaces, and give the first polynomial time algorithm for this problem. Specifically, we give a poly(n, log vertical bar Sigma vertical bar)-time computable bijection between {1,..., vertical bar N vertical bar} and the set N of all necklaces of length n over a finite alphabet Sigma. Our main application is to give an explicit indexing of all irreducible polynomials of degree n over the finite field F-q in time poly(n, log q) (with n log q bits of advice). This has applications in pseudorandomness, and answers an open question of Alon, Goldreich, Haastad and Peralta [2].
引用
收藏
页码:726 / 737
页数:12
相关论文
共 48 条
[41]   Probabilistic analysis on Macaulay matrices over finite fields and complexity of constructing Grobner bases [J].
Semaev, Igor ;
Tenti, Andrea .
JOURNAL OF ALGEBRA, 2021, 565 :651-674
[42]   Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case [J].
Mou, Chenqi ;
Wang, Dongming ;
Li, Xiaoliang .
THEORETICAL COMPUTER SCIENCE, 2013, 468 :102-113
[43]   Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms [J].
Grenet, Bruno ;
van der Hoeven, Joris ;
Lecerf, Gregoire .
PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, :197-204
[44]   Matrix-F5 algorithms over finite-precision complete discrete valuation fields [J].
Vaccon, Tristan .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 :329-350
[45]   COMPUTING DISCRETE LOGARITHMS IN THE JACOBIAN OF HIGH-GENUS HYPERELLIPTIC CURVES OVER EVEN CHARACTERISTIC FINITE FIELDS [J].
Velichka, M. D. ;
Jacobson, M. J., Jr. ;
Stein, A. .
MATHEMATICS OF COMPUTATION, 2014, 83 (286) :935-963
[46]   An application of a qd-type discrete hungry Lotka-Volterra equation over finite fields to a decoding problem [J].
Pan, Yan ;
Chang, Xiang-Ke ;
Hu, Xing-Biao .
STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) :450-474
[47]   Towards an efficient Task-based Parallelization over a Runtime System of an Explicit Finite-Volume CFD Code with Adaptive Time Stepping [J].
Carpaye, Jean Marie Couteyen ;
Roman, Jean ;
Brenner, Pierre .
2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, :1212-1221
[48]   Novel Computationally Efficient Multiple Access-Point/Router Deployment Approach for Full Line of Sight Coverage Over Arbitrary Indoor Polygonal/Prismatic Fields of Interest [J].
Tsai, Hao-Yu ;
Gadiraju, Venkata ;
Wu, Hsiao-Chun ;
Huang, Scott C. -H. .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06) :6902-6916