Multilinear Calderon-Zygmund operators on Morrey space with non-doubling measures

被引:3
作者
Li, Liang [1 ]
Ma, Bolin [2 ]
Zhou, Jiang [3 ]
机构
[1] Yili Normal Univ, Inst Appl Math, Dept Math, Yining 835000, Peoples R China
[2] Jiaxing Univ, Coll Sci & Informat Engn, Jiaxing 314001, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2011年 / 78卷 / 02期
关键词
non doubling measure; multilinear Calderon-Zygmund operator; commutators; RBMO(mu); Morrey space; SINGULAR-INTEGRALS; NONHOMOGENEOUS SPACES; LEBESGUE SPACES; COMMUTATORS; INEQUALITIES; BOUNDEDNESS; THEOREM;
D O I
10.5486/PMD.2011.4556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumption that mu is a non-negative Radon measure on R(d) which only satisfies some growth condition, the authors proved the multilinear Calderon-Zygmund operators are bounded from M(q1)(p1) (k, mu) x ... x M(qm)(pm) (k, mu) into M(q)(p) (k, mu) for some fixed q(1), ..., q(m) is an element of (1, infinity) and 1/q = 1/q(1) + ... + 1/q(m). Furthermore, the authors established the same bounded estimates for the commutators generated by multilinear Calderon-Zygmund operators and RBMO(mu) functions. Some of the results are also new even when the measure mu is the d-dimensional Lebesgue measure.
引用
收藏
页码:283 / 296
页数:14
相关论文
共 50 条
  • [31] Multilinear commutators of Calderon-Zygmund operator on generalized variable exponent Morrey spaces
    Ekincioglu, I.
    Keskin, C.
    Serbetci, A.
    POSITIVITY, 2021, 25 (04) : 1551 - 1567
  • [32] Morrey Spaces for Non-doubling Measures
    Yoshihiro SAWANO Hitoshi TANAKA Graduate School of Mathematical Sciences.The University of Tokyo
    Acta Mathematica Sinica(English Series), 2005, 21 (06) : 1535 - 1544
  • [33] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Tao, Xiangxing
    Zheng, Taotao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 287 - 308
  • [34] Morrey spaces for non-doubling measures
    Sawano, Y
    Tanaka, H
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) : 1535 - 1544
  • [35] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Xiangxing Tao
    Taotao Zheng
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 287 - 308
  • [36] Multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    STUDIA MATHEMATICA, 2010, 199 (01) : 1 - 16
  • [37] Calderon-Zygmund operators with non-diagonal singularity
    Li, Kangwei
    Sun, Wenchang
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 313 - 323
  • [38] Iterated commutators of multilinear Calderon-Zygmund maximal operators on some function spaces
    Si, Zengyan
    Zhang, Pu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [39] Vector-valued maximal multilinear Calderon-Zygmund operator with nonsmooth kernel on weighted Morrey space
    He, Suixin
    Zhou, Jiang
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (02) : 213 - 239
  • [40] Endpoint estimates for the commutators of multilinear Calderon-Zygmund operators with Dini type kernels
    Li, Zhengyang
    Xue, Qingying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,