NEW ITERATIVE SCHEME FOR THE APPROXIMATION OF FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN UNIFORMLY CONVEX BANACH SPACES

被引:0
作者
Kang, Shin Min [1 ,2 ]
Rafiq, Arif [3 ]
Kwun, Young Chel [4 ]
Ali, Faisal [5 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[3] Lahore Leads Univ, Dept Math, Lahore 54810, Pakistan
[4] Dong A Univ, Dept Math, Pusan 614714, South Korea
[5] Bahauddin Zakariya Univ, Ctr Adv Studies Pure & Appl Math, Multan 60800, Pakistan
关键词
Iteration process; asymptotically nonexpansive mappings; unifromly convex metric spaces; STRONG-CONVERGENCE; WEAK; THEOREMS; CONSTRUCTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove the existence of a fixed point for asymtotically nonexpensive mappings defined on a unifromly convex metric space. An modified two-stepIshikawa type iterative scheme is constructed which converges to the fixed point.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 29 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]  
[Anonymous], 1992, MATH J
[3]  
Beg I., 2001, NONLINEAR ANAL FORUM, V6, P27
[4]  
BEG I., 2001, Topological Methods in Nonlinear Anal., V17, P183
[7]  
Chang SS, 2001, INDIAN J PURE AP MAT, V32, P1297
[8]  
CIRIC L, 1993, CZECH MATH J, V43, P319
[9]  
Gajic L., 1993, ZB RAD PRIROD MAT FA, V23, P61
[10]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&