Flexibility of planar graphs of girth at least six

被引:5
作者
Dvorak, Zdenek [1 ]
Masarik, Tomas [2 ]
Musilek, Jan [2 ]
Pangrac, Ondrej [1 ]
机构
[1] Charles Univ Prague, CSI, Malostranske Namesti 25, Prague 11800, Czech Republic
[2] Charles Univ Prague, Dept Appl Math, Prague, Czech Republic
关键词
coloring; flexibility; girth six; planar graph;
D O I
10.1002/jgt.22567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a planar graph with a list assignment L. Suppose a preferred color is given for some of the vertices. We prove that if G has girth at least six and all lists have size at least three, then there exists an L-coloring respecting at least a constant fraction of the preferences.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 8 条
[1]  
DVORAK Z, 2017, 190202971 ARXIV
[2]   List coloring with requests [J].
Dvorak, Zdenek ;
Norin, Sergey ;
Postle, Luke .
JOURNAL OF GRAPH THEORY, 2019, 92 (03) :191-206
[3]  
Dvorák Z, 2017, ELECTRON J COMB, V24
[4]  
Erdo P., 1979, Congr. Numer., V26, P125
[5]   Linear-Time and Efficient Distributed Algorithms for List Coloring Graphs on Surfaces [J].
Postle, Luke .
2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, :929-941
[6]   3-LIST-COLORING PLANAR GRAPHS OF GIRTH-5 [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :101-107
[7]   A NOT 3-CHOOSABLE PLANAR GRAPH WITHOUT 3-CYCLES [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :325-328
[8]   LIST COLORINGS OF PLANAR GRAPHS [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :215-219