Restarted block-GMRES with deflation of eigenvalues

被引:68
作者
Morgan, RB [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
linear equations; iterative methods; GMRES; deflation; block methods; eigenvalues;
D O I
10.1016/j.apnum.2004.09.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Block-GMRES is an iterative method for solving nonsymmetric systems of linear equations with multiple right-hand sides. Restarting may be needed, due to orthogonalization expense or limited storage. We discuss how restarting affects convergence and the role small eigenvalues play. Then a version of restarted block-GMRES that deflates eigenvalues is presented. It is demonstrated that deflation can be particularly important for block methods. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 236
页数:15
相关论文
共 52 条
[1]  
Aliaga JI, 2000, MATH COMPUT, V69, P1577, DOI 10.1090/S0025-5718-99-01163-1
[2]   Adaptively preconditioned GMRES algorithms [J].
Baglama, J ;
Calvetti, D ;
Golub, GH ;
Reichel, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :243-269
[3]   ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems [J].
Bai, ZJ ;
Day, D ;
Ye, Q .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (04) :1060-1082
[4]  
Burrage K, 1998, NUMER LINEAR ALGEBR, V5, P101, DOI 10.1002/(SICI)1099-1506(199803/04)5:2<101::AID-NLA127>3.3.CO
[5]  
2-T
[6]   Analysis of projection methods for solving linear systems with multiple right-hand sides [J].
Chan, TF ;
Wan, WL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1698-1721
[7]  
Chapman A, 1997, NUMER LINEAR ALGEBR, V4, P43, DOI 10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.3.CO
[8]  
2-Q
[9]  
Cullum J., 1974, 1974 IEEE C DECISION, P505
[10]   Truncation strategies for optimal Krylov subspace methods [J].
De Sturler, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :864-889