Fish Classification Based on Robust Features Selection Using Machine Learning Techniques

被引:9
作者
Hnin, Than Thida [1 ]
Lynn, Khin Thidar [1 ]
机构
[1] Univ Comp Studies, Mandalay, Myanmar
来源
GENETIC AND EVOLUTIONARY COMPUTING, VOL I | 2016年 / 387卷
关键词
Combination theory; Taxonomy; Identification; Fishes;
D O I
10.1007/978-3-319-23204-1_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The taxonomic identification of fishes is a time-consuming process and making errors is indispensable for those who are not specialists. This system proposes an automated species identification system to identify taxonomic characters of species based on specimens. It also provides statistical clues for assisting taxonomists to identify accurate species or review misdiagnosed species. For this system, feature selection is an essential step to effectively reduce data dimensionality. By using combination theory, this system creates the set of attribute pairs to construct the training dataset. And then each attribute pair in training dataset is tested by using two classifiers. Based on the accuracy result of each classifier on attribute pairs and the majority voting of each feature in these attribute pairs, this system selects the most relevant feature set. Finally, this system applied three supervised classifiers to verify the effectiveness of selected features subset.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 16 条
[1]  
Abraham Ranjit., 2009, International Journal of Computational Intelligence Research, V5, P116
[2]  
Alsmadi M.K., 2010, J THEORETICAL APPL I
[3]   Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics [J].
Boulesteix, Anne-Laure ;
Janitza, Silke ;
Kruppa, Jochen ;
Koenig, Inke R. .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (06) :493-507
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Chen H., 2008, J MULTIMEDIA, V3
[6]   IPez: An expert system for the taxonomic identification of fishes based on machine learning techniques [J].
Guisande, C. ;
Manjarres-Hernandez, A. ;
Pelayo-Villamil, P. ;
Granado-Lorencio, C. ;
Riveiro, I. ;
Acuna, A. ;
Prieto-Piraquive, E. ;
Janeiro, E. ;
Matias, J. M. ;
Patti, C. ;
Patti, B. ;
Mazzola, S. ;
Jimenez, S. ;
Duque, V. ;
Salmeron, F. .
FISHERIES RESEARCH, 2010, 102 (03) :240-247
[7]  
Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI [DOI 10.1145/1656274.1656278, 10.1145/1656274.1656278]
[8]   Automatic identification of species with neural networks [J].
Hernandez-Serna, Andres ;
Fernanda Jimenez-Segura, Luz .
PEERJ, 2014, 2
[9]  
Inza I., MACHINE LEARNING IND
[10]  
Jehad A., 2012, Int. J. Comput. Sci. Issues (IJCSI), V9, P272