Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation

被引:52
|
作者
Zhu, Tieyuan [1 ,2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Nat Gas Res, University Pk, PA 16802 USA
关键词
ATTENUATION ANISOTROPY; VELOCITY DISPERSION; SHALES;
D O I
10.1190/GEO2016-0635.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic anisotropy is the fundamental phenomenon of wave propagation in the earth's interior. Numerical modeling of wave behavior is critical for exploration and global seismology studies. The full elastic (anisotropy) wave equation is often used to model the complexity of velocity anisotropy, but it ignores attenuation anisotropy. I have presented a time-domain displacement-stress formulation of the anisotropic-viscoelastic wave equation, which holds for arbitrarily anisotropic velocity and attenuation 1/Q. The frequency-independent Q model is considered in the seismic frequency band; thus, anisotropic attenuation is mathematically expressed by way of fractional time derivatives, which are solved using the truncated Grunwald-Letnikov approximation. I evaluate the accuracy of numerical solutions in a homogeneous transversely isotropic (TI) medium by comparing with theoretical Q(P) and Q(S) values calculated from the Christoffel equation. Numerical modeling results show that the anisotropic attenuation is angle dependent and significantly different from the isotropic attenuation. In synthetic examples, I have proved its generality and feasibility by modeling wave propagation in a 2D TI inhomogeneous medium and a 3D orthorhombic inhomogeneous medium.
引用
收藏
页码:WA1 / WA10
页数:10
相关论文
共 50 条
  • [1] Modeling Frequency-Independent Q Viscoacoustic Wave Propagation in Heterogeneous Media
    Xing, Guangchi
    Zhu, Tieyuan
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (11) : 11568 - 11584
  • [2] Numerical model of seismic wave propagation in viscoelastic media
    Sabinin, V
    Chichinina, T
    Jarillo, GR
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 922 - 927
  • [3] Numerical simulation of wave propagation in anisotropic media
    Petrov, I. B.
    Favorskaya, A. V.
    Vasyukov, A. V.
    Ermakov, A. S.
    Beklemysheva, K. A.
    Kazakov, A. O.
    Novikov, A. V.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 778 - 780
  • [4] Numerical simulation of wave propagation in anisotropic media
    I. B. Petrov
    A. V. Favorskaya
    A. V. Vasyukov
    A. S. Ermakov
    K. A. Beklemysheva
    A. O. Kazakov
    A. V. Novikov
    Doklady Mathematics, 2014, 90 : 778 - 780
  • [5] Numerical simulation of elastic wave propagation in anisotropic media
    Zhang, JF
    Liu, TL
    ACTA MECHANICA SOLIDA SINICA, 2000, 13 (01) : 50 - 59
  • [6] NUMERICAL SIMULATION OF ELASTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA
    Zhang Jianfeng Liu Tielin (State Key Laboratory of Structure Analysis of Industrial Equipment
    Acta Mechanica Solida Sinica, 2000, 13 (01) : 50 - 59
  • [7] Numerical simulation of seismic wave in elastic and viscoelastic TTI media
    Xuelong Li
    Zhi Zhang
    Qinqin Ren
    Haibo Liu
    Fan Xue
    Earthquake Science, 2020, 33 (03) : 116 - 129
  • [8] Numerical simulation of seismic wave in elastic and viscoelastic TTI media
    Li, Xuelong
    Zhang, Zhi
    Ren, Qinqin
    Liu, Haibo
    Xue, Fan
    EARTHQUAKE SCIENCE, 2020, 33 (03) : 116 - 129
  • [9] Seismic wave propagation in nonlinear viscoelastic media using the auxiliary differential equation method
    Martin, Roland
    Bodet, Ludovic
    Tournat, Vincent
    Rejiba, Faycal
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) : 453 - 469
  • [10] Wave equation for underground viscoelastic media and wavefield numerical simulation
    Song Li-Wei
    Shi Ying
    Chen Shu-Min
    Ke Xuan
    Hou Xiao-Hui
    Liu Zhi-Qi
    ACTA PHYSICA SINICA, 2021, 70 (14)