Finite-size scaling of O(n) systems at the upper critical dimensionality

被引:13
|
作者
Lv, Jian-Ping [1 ]
Xu, Wanwan [1 ]
Sun, Yanan [1 ]
Chen, Kun [2 ]
Deng, Youjin [3 ,4 ,5 ]
机构
[1] Anhui Normal Univ, Dept Phys, Anhui Key Lab Optoelect Mat Sci & Technol, Minist Educ,Key Lab Funct Mol Solids, Wuhu 241000, Peoples R China
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[5] Minjiang Univ, Dept Phys & Elect Informat Engn, Fuzhou 350108, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
critical phenomena; universality class; O(n) vector model; finite-size scaling; CRITICAL EXPONENT; TRANSITION; QUANTUM; MODEL; ZEROS;
D O I
10.1093/nsr/nwaa212
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Logarithmic finite-size scaling of the O(n) universality class at the upper critical dimensionality (d(c) = 4) has a fundamental role in statistical and condensed-matter physics and important applications in various experimental systems. Here, we address this long-standing problem in the context of the n-vector model (n = 1, 2, 3) on periodic four-dimensional hypercubic lattices. We establish an explicit scaling form for the free-energy density, which simultaneously consists of a scaling term for the Gaussian fixed point and another term with multiplicative logarithmic corrections. In particular, we conjecture that the critical two-point correlation g(r, L), with L the linear size, exhibits a two-length behavior: follows r(2-dc) governed by the Gaussian fixed point at shorter distances and enters a plateau at larger distances whose height decays as L-dc/2 ( lnL)(p) over cap with (p) over cap =1/2$ a logarithmic correction exponent. Using extensive Monte Carlo simulations, we provide complementary evidence for the predictions through the finite-size scaling of observables, including the two-point correlation, the magnetic fluctuations at zero and nonzero Fourier modes and the Binder cumulant. Our work sheds light on the formulation of logarithmic finite-size scaling and has practical applications in experimental systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Finite-size scaling of O(n) systems at the upper critical dimensionality
    Jian-Ping Lv
    Wanwan Xu
    Yanan Sun
    Kun Chen
    Youjin Deng
    National Science Review, 2021, 8 (03) : 53 - 61
  • [2] Finite-size scaling and universality above the upper critical dimensionality
    Luijten, E
    Blote, HWJ
    PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1557 - 1561
  • [3] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [4] Finite-size scaling and universality above the upper critical dimensionality (vol 76, pg 1557, 1996)
    Luijten, E
    Blote, HWJ
    PHYSICAL REVIEW LETTERS, 1996, 76 (19) : 3662 - 3662
  • [5] Finite-size scaling in the φ4 theory above the upper critical dimension
    Chen, XS
    Dohm, V
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 529 - 542
  • [6] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [7] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [8] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [9] FINITE-SIZE SCALING FOR THE ISING MODEL ABOVE THE UPPER CRITICAL DIMENSION
    Honchar, Yu.
    Berche, B.
    Holovatch, Yu.
    Kenna, R.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (01):
  • [10] Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension
    Young, A. Peter
    ENTROPY, 2024, 26 (06)