Purely nonlinear instability of standing waves with minimal energy

被引:70
作者
Comech, A [1 ]
Pelinovsky, D
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
关键词
D O I
10.1002/cpa.10104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Hamiltonian systems with U(1) symmetry. We prove that in the generic situation the standing wave that has the minimal energy among all other standing waves is unstable, in spite of the absence of linear instability. Essentially, the instability is caused by higher algebraic degeneracy of the zero eigenvalue in the spectrum of the linearized system. We apply our theory to the nonlinear Schrodinger equation. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:1565 / 1607
页数:43
相关论文
共 25 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]   STABILITY AND INSTABILITY OF SOLITARY WAVES OF KORTEWEG-DEVRIES TYPE [J].
BONA, JL ;
SOUGANIDIS, PE ;
STRAUSS, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1987, 411 (1841) :395-412
[3]  
Buslaev V., 1993, St. Petersburg Math. J., V4, P1111
[4]   Simulation of instability of bright solitons for NLS with saturating nonlinearity [J].
Buslaev, VS ;
Grikurov, VE .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (06) :539-546
[5]  
COMECH A, 2002, ORBITAL STABILITY QU
[6]   Stabilization of solutions to nonlinear Schrodinger equations [J].
Cuccagna, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1110-1145
[7]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .2. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (02) :308-348
[8]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[9]  
GRILLAKIS M, 1988, COMMUN PUR APPL MATH, V41, P747, DOI [10.1002/cpa.3160410602, DOI 10.1002/CPA.3160410602]
[10]  
Kato T., 1976, GRUNDLEHREN MATH WIS, V132