Geometric phases in higher-order transverse optical modes

被引:2
|
作者
Habraken, Steven J. M. [1 ]
Nienhuis, Gerard [1 ]
机构
[1] Leiden Univ, Leiden Inst Phys, Leiden, Netherlands
来源
COMPLEX LIGHT AND OPTICAL FORCES IV | 2010年 / 7613卷
关键词
Geometric phase; Gouy effect; Orbital angular momentum; Algebraic methods; ORBITAL ANGULAR-MOMENTUM; PARAXIAL WAVE OPTICS; GAUSSIAN LIGHT-BEAMS; TRANSFORMATIONS;
D O I
10.1117/12.840024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the geometric origin of generalized Gouy phases in paraxial optical modes of arbitrary order. We focus on the specific case of cyclic beam transformations of non-astigmatic vortex beams, thereby, generalizing the well-known geometric phase shift for first-order beams with orbital angular momentum to modes of arbitrary order. Our method involves two pairs of bosonic ladder operators, which, analogous to the algebraic description of the quantum-mechanical harmonic oscillator in two dimensions, connect transverse modes of different order. Rather than studying the geometry of the infinite-dimensional space of higher-order modes, we focus on the space underlying the ladder operators. We identify overall phases of the ladder operators, thereby obtaining the phases of all higher-order modes, and show that the variation of these phases under optical elements and transformations has a geometric interpretation in terms of the other parameters involved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Influence of higher-order modes on ferroconvection
    Kanchana, C.
    Velez, J. A.
    Perez, L. M.
    Laroze, D.
    Siddheshwar, P. G.
    CHAOS, 2022, 32 (08)
  • [32] Application of the extended Jones matrix formalism for higher-order transverse modes to laser resonators
    Voss, Andreas
    Abdou-Ahmed, Marwan
    Graf, Thomas
    OPTICS EXPRESS, 2010, 18 (21): : 21540 - 21550
  • [33] Inverted-relief cavity used in VCSELs to suppress higher-order transverse modes
    Sarzala, Robert P.
    Nakwaski, Wlodzimierz
    PHOTONICS LETTERS OF POLAND, 2014, 6 (01) : 29 - 31
  • [34] THE HIGHER-ORDER STRUCTURE OF SCHEMA MODES
    Jacobs, Ingo
    Lenz, Lisa
    Wollny, Anna
    Horsch, Antje
    JOURNAL OF PERSONALITY DISORDERS, 2020, 34 (03) : 348 - 376
  • [35] HIGHER-ORDER MODES IN DIELECTRIC RESONATORS
    LOECHEL, N
    ELECTRONICS LETTERS, 1991, 27 (15) : 1340 - 1342
  • [36] Research on parameters of higher-order transverse magnetic modes in cylindrical coaxial cavity resonator
    Dong, YH
    Ding, YG
    Xiao, L
    ACTA PHYSICA SINICA, 2005, 54 (12) : 5629 - 5636
  • [37] SELF-LOCKING OF TRANSVERSE HIGHER-ORDER MODES IN A HE-NE LASER
    KOHIYAMA, K
    FUJIOKA, T
    KOBAYASH.M
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1968, 56 (03): : 333 - +
  • [38] Higher-order entanglement and many-body invariants for higher-order topological phases
    You, Yizhi
    Bibo, Julian
    Pollmann, Frank
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [39] Image matching with higher-order geometric features
    Paramanand, C.
    Rajagopalan, A. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (04) : 739 - 748
  • [40] Efficient Geometric Matching with Higher-Order Features
    Paramanand, C.
    Rajagopalan, A. N.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3241 - 3244