A potentiometric method was used to determine the stability constants for the various complexes of copper(II) with carbamoylcholine chloride (C) drug as a ligand in the presence of some biorelevant amino acid constituents like glycine (Gly), alanine (Ala), valine (Val), proline (Pro), beta-phenylalanine (Phe), S-methylcysteine (Met), threonine (Thr), ornithine (Orn), lysine (Lys), histidine (Hisd), histamine (Hist), and imidazole (Imz) as ligands (L). Stability constants of complexes were determined at 25 degrees C and I = 0.10 mol/L NaNO3. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of Delta log K and % R.S. values. Cu(II) complexes of drug C were synthesized in 1:1 and 1:1:1 M ratios of copper to drug [Cu(C)(NO3)(2)] (1) and copper to drug to glycine[Cu(C)(Gly)(NO3)].NO3 (2), respectively. Glycine ternary complex with drug and copper [Cu(C)(Gly)(NO3)].NO3 was considered as representative amino acid. The complexes 1 and 2 were isolated and characterized using various physicochemical and spectral techniques. Both complexes 1 and 2 were found to have magnetic moments corresponding to one unpaired electron. The possible square planar and square-pyramidal geometries of the copper (II) complexes were assigned on the basis of electron paramagnetic resonance (EPR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), ultraviolet-visible (UV-Vis) and infrared (IR) spectral studies, and the discrete Fourier transform method from DMOL3 calculations. Antioxidant activities of all the synthesized compounds were also investigated.