Differential of metric valued Sobolev maps

被引:8
作者
Gigli, Nicola [1 ]
Pasqualetto, Enrico [2 ]
Soultanis, Elefterios [3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Jyvaskyla, POB 35, FI-40014 Jyvaskyla, Finland
[3] Univ Fribourg, Av Europe 20, CH-700 Fribourg, Switzerland
关键词
Function spaces; Metric measure spaces; Sobolev spaces; LIPSCHITZ FUNCTIONS; MEASURE-SPACES;
D O I
10.1016/j.jfa.2019.108403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is R. We also show compatibility with the concept of co-local weak differential introduced by Convent and Van Schaftingen. (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [22] In Metric-measure Spaces Sobolev Embedding is Equivalent to a Lower Bound for the Measure
    Przemysław Górka
    Potential Analysis, 2017, 47 : 13 - 19
  • [23] Extensions and approximations of Banach-valued Sobolev functions
    Garcia-Bravo, Miguel
    Ikonen, Toni
    Zhu, Zheng
    MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (04)
  • [24] Sobolev maps on manifolds: degree, approximation, lifting
    Mironescu, Petru
    PERSPECTIVES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF HAIM BREZIS, 2007, 446 : 413 - 436
  • [25] Sobolev Spaces with Zero Boundary Values on Metric Spaces
    Tero Kilpeläinen
    Juha Kinnunen
    Olli Martio
    Potential Analysis, 2000, 12 : 233 - 247
  • [26] Sobolev and bounded variation functions on metric measure spaces
    Ambrosio, Luigi
    Ghezzi, Roberta
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 211 - 273
  • [27] Sobolev spaces with zero boundary values on metric spaces
    Kilpeläinen, T
    Kinnunen, J
    Martio, O
    POTENTIAL ANALYSIS, 2000, 12 (03) : 233 - 247
  • [28] Refined limiting imbeddings for Sobolev spaces of vector-valued
    Krbec, M
    Schmeisser, HJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (02) : 372 - 388
  • [29] Differential and geometric properties of Sobolev mappings
    Ukhlov, AD
    MATHEMATICAL NOTES, 2004, 75 (1-2) : 291 - 294
  • [30] Differential and Geometric Properties of Sobolev Mappings
    A. D. Ukhlov
    Mathematical Notes, 2004, 75 : 291 - 294