Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking

被引:326
作者
Lv, Yan [1 ]
Yang, Hao-Cheng [1 ]
Liang, Hong-Qing [1 ]
Wan, Ling-Shu [1 ]
Xu, Zhi-Kang [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Funct, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofiltration membrane; Composite membrane; Polydopamine; Polyethylenimine; Co-deposition; HYDRODYNAMIC PERMEABILITY; SEPARATION PERFORMANCE; POLYDOPAMINE; POLYMERIZATION; FABRICATION; LAYER; PH;
D O I
10.1016/j.memsci.2014.11.024
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Novel composite nanotiltration membranes (NEMs) were simply fabricated via co-deposition of mussel inspired polydopamine (PDA) and polyetheylenimine (PEI) followed by glutaraldehyde (GA) crosslinking. A uniform, robust and detect-free selective layer was generated On the hydrolyzed polyacrylonitrile (HPAN) ultrafiltration membrane substrate, endowing the composite NEMs with high separation performance for multivalent ions. Zeta potential measurements indicate these NFMs are slightly positively charged, resulting in a salts rejection sequence of MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl at pH 5.5. The nanofiltration performance can be tuned by changing the co-deposition time and the mass ratio of dopamine/PEI. A mass ratio of 2/2 with 4 h co-deposition is the optimum protocol for the membrane performances including surface hydrophilicity, water flux and salt rejection. Moreover, the composite NEMs show a good structural stability for immersing in ethanol or for long-term nanotiltration process. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 37 条
[1]   Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis [J].
Arena, Jason T. ;
McCloskey, Bryan ;
Freeman, Benny D. ;
McCutcheon, Jeffrey R. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 375 (1-2) :55-62
[2]   UV-Photo Graft Functionalization of Polyethersulfone Membrane with Strong Polyelectrolyte Hydrogel and Its Application for Nanofiltration [J].
Bernstein, Roy ;
Anton, Enrique ;
Ulbricht, Mathias .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3438-3446
[3]   The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings [J].
Cheng, Chong ;
Li, Shuang ;
Zhao, Weifeng ;
Wei, Qiang ;
Nie, Shengqiang ;
Sun, Shudong ;
Zhao, Changsheng .
JOURNAL OF MEMBRANE SCIENCE, 2012, 417 :228-236
[4]   Nanofiltration membranes synthesized from hyperbranched polyethyleneimine [J].
Chiang, Yen-Che ;
Hsub, Yi-Zhe ;
Ruaan, Ruoh-Chyu ;
Chuang, Ching-Jung ;
Tung, Kuo-Lun .
JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (01) :19-26
[5]   High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes [J].
Deng, Huiyu ;
Xu, Youyi ;
Chen, Qingchun ;
Wei, Xiuzhen ;
Zhu, Baoku .
JOURNAL OF MEMBRANE SCIENCE, 2011, 366 (1-2) :363-372
[6]   Elucidating the Structure of Poly(dopamine) [J].
Dreyer, Daniel R. ;
Miller, Daniel J. ;
Freeman, Benny D. ;
Paul, Donald R. ;
Bielawski, Christopher W. .
LANGMUIR, 2012, 28 (15) :6428-6435
[7]   Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli [J].
Hilal, N ;
Kochkodan, V ;
Al-Khatib, L ;
Levadna, T .
DESALINATION, 2004, 167 (1-3) :293-300
[8]   A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy [J].
Hilal, N ;
Al-Zoubi, H ;
Darwish, NA ;
Mohammad, AW ;
Abu Arabi, M .
DESALINATION, 2004, 170 (03) :281-308
[9]   Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation [J].
Hong, Seonki ;
Na, Yun Suk ;
Choi, Sunghwan ;
Song, In Taek ;
Kim, Woo Youn ;
Lee, Haeshin .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (22) :4711-4717
[10]   Enabling Graphene Oxide Nanosheets as Water Separation Membranes [J].
Hu, Meng ;
Mi, Baoxia .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (08) :3715-3723