Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening

被引:19
作者
Aspitarte, Lee [1 ]
McCulley, Daniel R. [1 ]
Bertoni, Andrea [2 ]
Island, Joshua O. [3 ]
Ostermann, Marvin [3 ]
Rontani, Massimo [2 ]
Steele, Gary A. [3 ]
Minot, Ethan D. [1 ]
机构
[1] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA
[2] CNR, Ist Nanosci, Via Campi 213a, I-41125 Modena, Italy
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会;
关键词
RENORMALIZATION; TRANSPORT; BEHAVIOR;
D O I
10.1038/s41598-017-09372-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and correlations, even at room temperature. Here, we use dielectric liquids to screen e-e interactions in individual suspended ultra-clean CNTs. Using multiple techniques, the transport gap is measured as dielectric screening is increased. Changing the dielectric environment from air to isopropanol, we observe a 25% reduction in the transport gap of semiconducting CNTs, and a 32% reduction in the band gap of narrow-gap CNTs. Additional measurements are reported in dielectric oils. Our results elucidate the nature of the transport gap in CNTs, and show that dielectric environment offers a mechanism for significant control over the transport band gap.
引用
收藏
页数:9
相关论文
共 37 条
[21]   Substrate-induced Band Gap Renormalization in Semiconducting Carbon Nanotubes [J].
Lanzillo, Nicholas A. ;
Kharche, Neerav ;
Nayak, Saroj K. .
SCIENTIFIC REPORTS, 2014, 4
[22]   Band-gap renormalization in carbon nanotubes:: Origin of the ideal diode behavior in carbon nanotube p-n structures [J].
Lee, Ji Ung .
PHYSICAL REVIEW B, 2007, 75 (07)
[23]  
Lin H, 2010, NAT MATER, V9, P235, DOI [10.1038/NMAT2624, 10.1038/nmat2624]
[24]  
Liu KH, 2012, NAT NANOTECHNOL, V7, P325, DOI [10.1038/nnano.2012.52, 10.1038/NNANO.2012.52]
[25]  
Pecker S, 2013, NAT PHYS, V9, P576, DOI [10.1038/NPHYS2692, 10.1038/nphys2692]
[26]   Scaling of excitons in carbon nanotubes [J].
Perebeinos, V ;
Tersoff, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :257402-1
[27]   Scaling of resistance and electron mean free path of single-walled carbon nanotubes [J].
Purewal, Meninder S. ;
Hong, Byung Hee ;
Ravi, Anirudhh ;
Chandra, Bhupesh ;
Hone, James ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[28]   High performance electrolyte gated carbon nanotube transistors [J].
Rosenblatt, S ;
Yaish, Y ;
Park, J ;
Gore, J ;
Sazonova, V ;
McEuen, PL .
NANO LETTERS, 2002, 2 (08) :869-872
[29]  
Schneider B. H., 2012, SCI REP, V2, P329
[30]  
Shi ZW, 2015, NAT PHOTONICS, V9, P515, DOI [10.1038/NPHOTON.2015.123, 10.1038/nphoton.2015.123]