Embedded diagonally implicit Runge-Kutta-Nystrom 4(3) pair for solving special second-order IVPs

被引:17
作者
Al-Khasawneh, Raed Ali [1 ]
Ismail, Fudziah [1 ]
Suleiman, Mohamed [1 ]
机构
[1] Univ Putra Malaysia Serdang, Dept Math, Serdang 43400, Selangor, Malaysia
关键词
special second-order; Runge-Kutta-Nystrom; stability; DIFFERENTIAL-EQUATIONS; FORMULA;
D O I
10.1016/j.amc.2007.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, third-order 3-stage diagonally implicit Runge-Kutta-Nystrom method embedded in fourth-order 4-stage for solving special second-order initial value problems is constructed. The method has the property of minimized local truncation error as well as the last row of the coefficient matrix is equal to the vector output. The stability of the method is investigated and a standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first-order system and solved using existing Runge-Kutta method. The results clearly shown the advantage and the efficiency of the new method. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1803 / 1814
页数:12
相关论文
共 16 条
[1]   A new type of singly-implicit Runge-Kutta method [J].
Butcher, JC ;
Chen, DJL .
APPLIED NUMERICAL MATHEMATICS, 2000, 34 (2-3) :179-188
[2]  
Chakravarti P. C., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P368, DOI 10.1007/BF01939405
[3]   HIGH-ACCURACY P-STABLE METHODS FOR Y'' = F(T,Y) [J].
CHAWLA, MM ;
RAO, PS .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (02) :215-220
[4]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[5]  
Dormand JR., 1980, J COMPUT APPL MATH, V6, P19, DOI [10.1016/0771-050X(80)90013-3, DOI 10.1016/0771-050X(80)90013-3]
[6]   A new optimized non-FSAL embedded Runge-Kutta-Nystrom algorithm of orders 6 and 4 in six stages [J].
El-Mikkawy, M ;
Rahmo, ED .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (01) :33-43
[7]   A 9TH ORDER RUNGE-KUTTA-NYSTROM FORMULA WITH STEPSIZE CONTROL FOR THE DIFFERENTIAL-EQUATIONS X-UMLAUT=F(T,X) [J].
FEHLBERG, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10) :477-485
[8]   NEW RUNGE-KUTTA-NYSTROM FORMULA-PAIRS OF ORDER 8(7), 9(8), 10(9) AND 11(10) FOR DIFFERENTIAL-EQUATIONS OF THE FORM Y'' = F(X,Y) [J].
FILIPPI, S ;
GRAF, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (03) :361-370
[9]   COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
HULL, TE ;
ENRIGHT, WH ;
FELLEN, BM ;
SEDGWICK, AE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) :603-637
[10]  
LAMBERT JD, 1976, J I MATH APPL, V18, P189