Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography

被引:40
作者
Alam, Minhaj [1 ]
Thapa, Damber [1 ]
Lim, Jennifer I. [2 ]
Cao, Dingcai [2 ]
Yao, Xincheng [1 ,2 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Ophthalmol & Visual Sci, Chicago, IL 60612 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2017年 / 8卷 / 09期
关键词
OCULAR MANIFESTATIONS; VESSEL DENSITY; QUANTIFICATION; SIGN;
D O I
10.1364/BOE.8.004206
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As a new optical coherence tomography (OCT) imaging modality, there is no standardized quantitative interpretation of OCT angiography (OCTA) characteristics of sickle cell retinopathy (SCR). This study is to demonstrate computer-aided SCR classification using quantitative OCTA features, i.e., blood vessel tortuosity (BVT), blood vessel diameter (BVD), vessel perimeter index (VPI), foveal avascular zone (FAZ) area, FAZ contour irregularity, parafoveal avascular density (PAD). It was observed that combined features show improved classification performance, compared to single feature. Three classifiers, including support vector machine (SVM), k-nearest neighbor (KNN) algorithm, and discriminant analysis, were evaluated. Sensitivity, specificity, and accuracy were quantified to assess the performance of each classifier. For SCR vs. control classification, all three classifiers performed well with an average accuracy of 95% using the six quantitative OCTA features. For mild vs. severe stage retinopathy classification, SVM shows better (97% accuracy) performance, compared to KNN algorithm (95% accuracy) and discriminant analysis (88% accuracy). (C) 2017 Optical Society of America
引用
收藏
页码:4206 / 4216
页数:11
相关论文
共 39 条
  • [1] Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography
    Alam, Minhaj
    Thapa, Damber
    Lim, Jennifer I.
    Cao, Dingcai
    Yao, Xincheng
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (03): : 1741 - 1753
  • [2] Relationship between diabetes and grayscale fractal dimensions of retinal vasculature in the Indian population
    Aliahmad, Behzad
    Kumar, Dinesh Kant
    Sarossy, Marc George
    Jain, Rajeev
    [J]. BMC OPHTHALMOLOGY, 2014, 14
  • [3] Allwein E., 2002, JMLR, V1, P113
  • [4] [Anonymous], 2013, INTRO STAT LEARNING
  • [5] [Anonymous], 1998, EUR C MACH LEARN
  • [6] MACULAR AND PERIMACULAR VASCULAR REMODELING IN SICKLING HEMOGLOBINOPATHIES
    ASDOURIAN, GK
    NAGPAL, KC
    BUSSE, B
    GOLDBAUM, M
    PATRIANAKOS, D
    RABB, MF
    GOLDBERG, MF
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 1976, 60 (06) : 431 - 453
  • [7] SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE
    BREIMAN, L
    SPECTOR, P
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) : 291 - 319
  • [8] Sickle cell retinopathy: diagnosis and treatment
    Brizzi Chizzotti Bonanomi, Maria Teresa
    Lavezzo, Marcelo Mendes
    [J]. ARQUIVOS BRASILEIROS DE OFTALMOLOGIA, 2013, 76 (05) : 320 - 327
  • [9] Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987)
    Broe, Rebecca
    Rasmussen, Malin L.
    Frydkjaer-Olsen, Ulrik
    Olsen, Birthe S.
    Mortensen, Henrik B.
    Peto, Tunde
    Grauslund, Jakob
    [J]. DIABETOLOGIA, 2014, 57 (10) : 2215 - 2221
  • [10] Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography
    Chu, Zhongdi
    Lin, Jason
    Gao, Chen
    Xin, Chen
    Zhang, Qinqin
    Chen, Chieh-Li
    Roisman, Luis
    Gregori, Giovanni
    Rosenfeld, Philip J.
    Wang, Ruikang K.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)