Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography

被引:44
作者
Alam, Minhaj [1 ]
Thapa, Damber [1 ]
Lim, Jennifer I. [2 ]
Cao, Dingcai [2 ]
Yao, Xincheng [1 ,2 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Ophthalmol & Visual Sci, Chicago, IL 60612 USA
关键词
OCULAR MANIFESTATIONS; VESSEL DENSITY; QUANTIFICATION; SIGN;
D O I
10.1364/BOE.8.004206
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As a new optical coherence tomography (OCT) imaging modality, there is no standardized quantitative interpretation of OCT angiography (OCTA) characteristics of sickle cell retinopathy (SCR). This study is to demonstrate computer-aided SCR classification using quantitative OCTA features, i.e., blood vessel tortuosity (BVT), blood vessel diameter (BVD), vessel perimeter index (VPI), foveal avascular zone (FAZ) area, FAZ contour irregularity, parafoveal avascular density (PAD). It was observed that combined features show improved classification performance, compared to single feature. Three classifiers, including support vector machine (SVM), k-nearest neighbor (KNN) algorithm, and discriminant analysis, were evaluated. Sensitivity, specificity, and accuracy were quantified to assess the performance of each classifier. For SCR vs. control classification, all three classifiers performed well with an average accuracy of 95% using the six quantitative OCTA features. For mild vs. severe stage retinopathy classification, SVM shows better (97% accuracy) performance, compared to KNN algorithm (95% accuracy) and discriminant analysis (88% accuracy). (C) 2017 Optical Society of America
引用
收藏
页码:4206 / 4216
页数:11
相关论文
共 39 条
[1]   Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography [J].
Alam, Minhaj ;
Thapa, Damber ;
Lim, Jennifer I. ;
Cao, Dingcai ;
Yao, Xincheng .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (03) :1741-1753
[2]   Relationship between diabetes and grayscale fractal dimensions of retinal vasculature in the Indian population [J].
Aliahmad, Behzad ;
Kumar, Dinesh Kant ;
Sarossy, Marc George ;
Jain, Rajeev .
BMC OPHTHALMOLOGY, 2014, 14
[3]  
Allwein E., 2002, JMLR, V1, P113
[4]  
[Anonymous], 2013, INTRO STAT LEARNING
[5]  
[Anonymous], 1998, EUR C MACH LEARN
[6]   MACULAR AND PERIMACULAR VASCULAR REMODELING IN SICKLING HEMOGLOBINOPATHIES [J].
ASDOURIAN, GK ;
NAGPAL, KC ;
BUSSE, B ;
GOLDBAUM, M ;
PATRIANAKOS, D ;
RABB, MF ;
GOLDBERG, MF .
BRITISH JOURNAL OF OPHTHALMOLOGY, 1976, 60 (06) :431-453
[7]   SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE [J].
BREIMAN, L ;
SPECTOR, P .
INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) :291-319
[8]   Sickle cell retinopathy: diagnosis and treatment [J].
Brizzi Chizzotti Bonanomi, Maria Teresa ;
Lavezzo, Marcelo Mendes .
ARQUIVOS BRASILEIROS DE OFTALMOLOGIA, 2013, 76 (05) :320-327
[9]   Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987) [J].
Broe, Rebecca ;
Rasmussen, Malin L. ;
Frydkjaer-Olsen, Ulrik ;
Olsen, Birthe S. ;
Mortensen, Henrik B. ;
Peto, Tunde ;
Grauslund, Jakob .
DIABETOLOGIA, 2014, 57 (10) :2215-2221
[10]   Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography [J].
Chu, Zhongdi ;
Lin, Jason ;
Gao, Chen ;
Xin, Chen ;
Zhang, Qinqin ;
Chen, Chieh-Li ;
Roisman, Luis ;
Gregori, Giovanni ;
Rosenfeld, Philip J. ;
Wang, Ruikang K. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)