Characterization of Internal Protein Dynamics and Conformational Entropy by NMR Relaxation

被引:19
作者
Stetz, Matthew A. [1 ,2 ]
Caro, Jose A. [1 ,2 ]
Kotaru, Sravya [3 ]
Yao, Xuejun [1 ,2 ]
Marques, Bryan S. [3 ]
Valentine, Kathleen G. [1 ,2 ]
Wand, A. Joshua [1 ,2 ,3 ]
机构
[1] Univ Penn, Perelman Sch Med, Johnson Res Fdn, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Grad Grp Biochem & Mol Biophys, Philadelphia, PA 19104 USA
来源
BIOLOGICAL NMR, PT B | 2019年 / 615卷
关键词
SIDE-CHAIN DYNAMICS; ROTATIONAL DIFFUSION ANISOTROPY; CHEMICAL-SHIFT ASSIGNMENTS; MOLECULAR-WEIGHT PROTEINS; DEUTERIUM SPIN PROBES; METHYL-GROUP DYNAMICS; MODEL-FREE APPROACH; BACKBONE DYNAMICS; TRANSVERSE RELAXATION; ORDER PARAMETERS;
D O I
10.1016/bs.mie.2018.09.010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies suggest that the fast timescale motion of methyl-bearing side chains may play an important role in mediating protein activity. These motions have been shown to encapsulate the residual conformational entropy of the folded state that can potentially contribute to the energetics of protein function. Here, we provide an overview of how to characterize these motions using nuclear magnetic resonance (NMR) spin relaxation methods. The strengths and limitations of several techniques are highlighted in order to assist with experimental design. Particular emphasis is placed on the practical aspects of sample preparation, data collection, data fitting, and statistical analysis. Additionally, discussion of the recently refined "entropy meter" is presented and its use in converting NMR observables to conformational entropy is illustrated. Taken together, these methods should yield new insights into the complex interplay between structure and dynamics in protein function.
引用
收藏
页码:237 / 284
页数:48
相关论文
共 126 条
[11]  
Cavanagh J, 2007, PROTEIN NMR SPECTROSCOPY: PRINCIPLES AND PRACTICE, 2ND EDITION, P1
[12]   Water proton spin saturation affects measured protein backbone 15N spin relaxation rates [J].
Chen, Kang ;
Tjandra, Nico .
JOURNAL OF MAGNETIC RESONANCE, 2011, 213 (01) :151-157
[13]   Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel (vol 36, pg 123, 2006) [J].
Chill, Jordan H. ;
Louis, John M. ;
Baber, James L. ;
Bax, Ad .
JOURNAL OF BIOMOLECULAR NMR, 2007, 38 (01) :105-105
[14]   Thermal offset viscosities of liquid H2O, D2O, and T2O [J].
Cho, CH ;
Urquidi, J ;
Singh, S ;
Robinson, GW .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (11) :1991-1994
[15]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991
[16]   HYDRONMR: Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations [J].
de la Torre, JG ;
Huertas, ML ;
Carrasco, B .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (01) :138-146
[17]   MODEL-INDEPENDENT AND MODEL-DEPENDENT ANALYSIS OF THE GLOBAL AND INTERNAL DYNAMICS OF CYCLOSPORINE-A [J].
DELLWO, MJ ;
WAND, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (13) :4571-4578
[18]   BACKBONE DYNAMICS OF A FREE AND A PHOSPHOPEPTIDE-COMPLEXED SRC HOMOLOGY-2 DOMAIN STUDIED BY N-15 NMR RELAXATION [J].
FARROW, NA ;
MUHANDIRAM, R ;
SINGER, AU ;
PASCAL, SM ;
KAY, CM ;
GISH, G ;
SHOELSON, SE ;
PAWSON, T ;
FORMANKAY, JD ;
KAY, LE .
BIOCHEMISTRY, 1994, 33 (19) :5984-6003
[19]   A 1H-NMR thermometer suitable for cryoprobes [J].
Findeisen, M. ;
Brand, T. ;
Berger, S. .
MAGNETIC RESONANCE IN CHEMISTRY, 2007, 45 (02) :175-178
[20]   Protein NMR relaxation: theory, applications and outlook [J].
Fischer, MWF ;
Majumdar, A ;
Zuiderweg, ERP .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1998, 33 :207-272