Characterization and perturbation of Gabor frame sequences with rational parameters

被引:5
作者
Bownik, Marcin [1 ]
Christensen, Ole
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
Gabor frames; Weyl-Heisenberg frames; Zibulski-Zeevi transform;
D O I
10.1016/j.jat.2007.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A c L-2(R) be at most countable, and E N. We characterize various frame-properties for Gabor systems of the form G(l. p/q . A) = {e(2 pi imx) g (x-np/q) : m, n epsilon Z, g epsilon A} in terms of the corresponding frame properties for the row vectors in the Zibulski-Zeevi matrix. This extends work by [Ron and Shen, Weyl-Heisenherg systenis and Riesz bases in L-2(R-d). Duke Math. J. 89 (1997) 237-282]. who considered the case where A is finite. As a consequence of the results, we obtain results concerning stability of Gabor frames under perturbation of the generators. We also introduce the concept of rigid frame sequences, which have the property that all Sufficiently small perturbations with a lower frame bound above some threshold value, automatically generate the same closed linear span. Finally, we characterize rigid Gabor frame sequences in terms of their Zibulski-Zeevi matrix. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]   The analysis and design of windowed Fourier frame based multiple description source coding schemes [J].
Balan, R ;
Daubechies, I ;
Vaishampayan, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2491-2536
[3]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[4]   Biorthogonal wavelets, MRA's and shift-invariant spaces [J].
Bownik, M ;
Garrigós, G .
STUDIA MATHEMATICA, 2004, 160 (03) :231-248
[5]   The structure of shift-modulation invariant spaces: The rational case [J].
Bownik, Marcin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :172-219
[6]   A PALEY-WIENER THEOREM FOR FRAMES [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2199-2201
[7]   Perturbation of frames for a subspace of a Hilbert space [J].
Christensen, O ;
Lennard, C ;
Lewis, C .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (04) :1237-1249
[8]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI [10.1007/978-0-8176-8224-8, DOI 10.1007/978-0-8176-8224-8]
[9]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[10]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283