On generalized stochastic perturbation-based finite element method

被引:44
作者
Kaminski, M [1 ]
机构
[1] Tech Univ Lodz, Chair Mech Mat, PL-93590 Lodz, Poland
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2006年 / 22卷 / 01期
关键词
stochastic finite element method; stochastic perturbation technique; symbolic computations; composite materials;
D O I
10.1002/cnm.795
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generalized nth order stochastic perturbation technique, that can be applied to solve some boundary value or boundary initial problems in computational physics and/or engineering with random parameters is proposed here. This technique is demonstrated in conjunction with the finite element method (FEM) to model ID linear elastostatics problem with a single random variable. The symbolic computer program is employed to perform computational studies on convergence of the first two probabilistic moments for simple unidirectional tension of a bar. These numerical studies verify the influence of coefficient of variation of the random input and, at the same time, of the perturbation parameter on the first two probabilistic moments of the final solution vector. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 7 条
[1]  
Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4
[2]  
Kaminski M, 2003, LECT NOTES COMPUT SC, V2657, P521
[3]   Stochastic perturbation approach to engineering structure vibrations by the finite difference method [J].
Kaminski, M .
JOURNAL OF SOUND AND VIBRATION, 2002, 251 (04) :651-670
[4]  
Kleiber M., 1992, STOCHASTIC FINITE EL
[5]   RANDOM FIELD FINITE-ELEMENTS [J].
LIU, WK ;
BELYTSCHKO, T ;
MANI, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (10) :1831-1845
[6]  
Nayfeh A. H., 1973, Perturbation Method
[7]  
Vanmarcke EH., 1983, Random Fields. Analysis and Synthesis