KAOLIN QUALITY DETERMINATION THROUGH AN ALGORITHM BASED ON NON-PARAMETRIC FUZZY LOGIC

被引:0
作者
Ordonez, Celestino [1 ]
Saavedra, Angeles [1 ]
Araujo, Maria [1 ]
Giraldez, Eduardo [1 ]
机构
[1] Univ Vigo, Vigo 36310, Spain
来源
DYNA-COLOMBIA | 2012年 / 79卷 / 171期
关键词
classification; fuzzy set; non-parametric fuzzy logic; kaolin quality;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we describe a new fuzzy supervised classification method that is a modification of the fuzzy pattern-matching multidensity classifier. The latter has been demonstrated to be one of the most effective classifiers for non-convex classes. Implementing a non-parametric density estimator in one stage of the parametric method, we developed a fuzzy non-parametric classifier that manages to avoid some of the problems associated with the parametric method. The method was applied to a mineralogy problem consisting of classifying kaolin samples according to different ceramic quality levels. Our results produced error percentages that were lower than those for the parametric method.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 19 条
  • [1] FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
    BEZDEK, JC
    EHRLICH, R
    FULL, W
    [J]. COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) : 191 - 203
  • [2] BOOTSTRAPPING THE MEAN INTEGRATED SQUARED ERROR
    CAO, R
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (01) : 137 - 160
  • [3] Four fuzzy supervised classification methods for discriminating classes of non-convex shape
    Devillez, A
    [J]. FUZZY SETS AND SYSTEMS, 2004, 141 (02) : 219 - 240
  • [4] WEIGHTED FUZZY PATTERN-MATCHING
    DUBOIS, D
    PRADE, H
    TESTEMALE, C
    [J]. FUZZY SETS AND SYSTEMS, 1988, 28 (03) : 313 - 331
  • [5] Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities
    Dubois, Didier
    Foulloy, Laurent
    Mauris, Gilles
    Prade, Henri
    [J]. Reliable Computing, 2004, 10 (04) : 273 - 297
  • [6] DUBOIS D, 1987, THEORIE POSSIBILITIE
  • [7] Dumitrescu D, 2000, INT SER COMPUTAT INT, P3
  • [8] Hardle W., 2003, MULTIVARIATE STAT AN
  • [9] Hardle W., 2004, NONPARAMETRIC SEMIPA, DOI DOI 10.1007/978-3-642-17146-8
  • [10] Izenman, 2008, Modern multivariate statistical techniques