Deep eutectic solvents (DESs) for cellulose dissolution: a mini-review

被引:186
作者
Chen, Yang-Lei [1 ]
Zhang, Xun [1 ]
You, Ting-Ting [1 ]
Xu, Feng [1 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
Cellulose; Dissolution; Deep eutectic solvents (DESs); IONIC LIQUIDS; CHOLINE CHLORIDE; LIGNOCELLULOSIC BIOMASS; GREEN; LIGNIN;
D O I
10.1007/s10570-018-2130-7
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Deep eutectic solvents (DESs), which are a novel class of sustainable designer solvents, have attracted considerable attentions in the field of cellulose chemistry. Due to their low cost and analogous physico-chemical properties to ionic liquids, DESs are expected to be alternative solvents for dissolving cellulose. However, at present, the solubility of cellulose in DESs is much lower than in most ionic liquids. In this mini-review, we briefly summarize the current state of knowledge about cellulose dissolution in DESs. By comparing with similar solvents, it was found that the components of current DESs are usually involved in hydrogen bond interaction making difficult their interaction with the hydrogen bond network of cellulose. Accordingly, we propose a strategy that the components which have good hydrogen bond accepting ability, such as Cl-, OAc-, HCOO-, (MeO)(2)PO2-, morpholine and imidazole, are promising choices to form DESs for cellulose dissolution. Ultrasound-assisted treatment and adding a surfactant are effective ways to promote cellulose solubility by enhancing the permeability of DESs.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 53 条
[1]   Electrodeposition of copper-tin alloys using deep eutectic solvents [J].
Abbott, A. P. ;
Alhaji, A. I. ;
Ryder, K. S. ;
Horne, M. ;
Rodopoulos, T. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2016, 94 (02) :104-113
[2]   Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Munro, HL ;
Rasheed, RK ;
Tambyrajah, V .
CHEMICAL COMMUNICATIONS, 2001, (19) :2010-2011
[3]   Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids [J].
Abbott, AP ;
Boothby, D ;
Capper, G ;
Davies, DL ;
Rasheed, RK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :9142-9147
[4]   Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, R .
INORGANIC CHEMISTRY, 2004, 43 (11) :3447-3452
[5]   Novel solvent properties of choline chloride/urea mixtures [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, RK ;
Tambyrajah, V .
CHEMICAL COMMUNICATIONS, 2003, (01) :70-71
[6]   Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature [J].
Abe, Mitsuru ;
Fukaya, Yukinobu ;
Ohno, Hiroyuki .
GREEN CHEMISTRY, 2010, 12 (07) :1274-1280
[7]   Kinetic and chemical studies on the isomerization of monosaccharides in N-methylmorpholine-N-oxide (NMMO) under Lyocell conditions [J].
Adorjan, I ;
Sjöberg, J ;
Rosenau, T ;
Hofinger, A ;
Kosma, P .
CARBOHYDRATE RESEARCH, 2004, 339 (11) :1899-1906
[8]   Natural deep eutectic solvents as new potential media for green technology [J].
Dai, Yuntao ;
van Spronsen, Jaap ;
Witkamp, Geert-Jan ;
Verpoorte, Robert ;
Choi, Young Hae .
ANALYTICA CHIMICA ACTA, 2013, 766 :61-68
[9]   How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? [J].
Ding, Shi-You ;
Liu, Yu-San ;
Zeng, Yining ;
Himmel, Michael E. ;
Baker, John O. ;
Bayer, Edward A. .
SCIENCE, 2012, 338 (6110) :1055-1060
[10]   The maize primary cell wall microfibril: A new model derived from direct visualization [J].
Ding, SY ;
Himmel, ME .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (03) :597-606