An improved result for positive measure reducibility of quasi-periodic linear systems

被引:5
作者
He, HL [1 ]
You, JG [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-periodic; reducibility; KAM; non-degeneracy;
D O I
10.1007/s10114-004-0473-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by the KAM method, under weaker small denominator conditions and nondegeneracy conditions, we prove a positive measure reducibility for quasi-periodic linear systems close to constant: X = (A(lambda) + F(rho, lambda))X, (rho)over dot = omega where the parameter lambda is an element of (a, b), omega is a fixed Diophantine vector, which is a generalization of Jorba & Simo's positive measure reducibility result.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 14 条
[1]  
Coppel W. A., 1977, Bulletin of the Australian Mathematical Society, V16, P61, DOI 10.1017/S0004972700023005
[2]  
Dinaburg EI., 1975, Funct. Anal. Appl, V9, P8
[3]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482
[4]  
ELIASSON LH, 2001, P S PURE MATH AMS
[5]   THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS [J].
JOHNSON, R ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :403-438
[6]   SMOOTHNESS OF SPECTRAL SUBBUNDLES AND REDUCIBILITY OF QUASI-PERIODIC LINEAR-DIFFERENTIAL SYSTEMS [J].
JOHNSON, RA ;
SELL, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 41 (02) :262-288
[7]   ON THE REDUCIBILITY OF LINEAR-DIFFERENTIAL EQUATIONS WITH QUASI-PERIODIC COEFFICIENTS [J].
JORBA, A ;
SIMO, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (01) :111-124
[8]  
KRIKORIAN R, 1999, ASTERISQUE, V259
[9]  
Lancaster P., 1969, THEORY MATRICES
[10]  
Rellich F., 1969, PERTURBATION THEORY