A note on Hamiltonian cycles in K1,r-free graphs

被引:0
作者
Li, R [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called K-1,K-r-free if it does not contain K-1,K-r as an induced subgraph. In this paper we generalize a theorem of Markus for Hamiltonicity of 2-connected K-1,K-r-free (r greater than or equal to 5) graphs and present a sufficient condition for 1-tough K-1,K-r-free (r greater than or equal to 4) graphs to be Hamiltonian.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 7 条
[1]  
Badian E., 1989, ZPE, V79, P59
[2]  
Bondy J.A., 1976, Graph Theory, V290
[3]  
CHEN G, 1995, J GRAPH THEOR, V4, P423
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]  
HOA VD, 1995, J G T, V2, P137
[6]   LONG CYCLES IN BIPARTITE GRAPHS [J].
JACKSON, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) :118-131
[7]  
Markus L. R., 1993, Congr. Numer., V98, P143