Partitionable sets, almost partitionable sets, and their applications

被引:3
作者
Chang, Yanxun [1 ]
Costa, Simone [2 ]
Feng, Tao [1 ]
Wang, Xiaomiao [3 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing, Peoples R China
[2] Univ Brescia, Dipartimento DICATAM, Brescia, Italy
[3] Ningbo Univ, Sch Math & Stat, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
almost partitionable set; balanced sampling plans excluding contiguous unit; partitionable set; optical orthogonal code; whist tournament; OPTICAL ORTHOGONAL CODES; TRIPLEWHIST TOURNAMENTS; DIFFERENCE-FAMILIES; WHIST TOURNAMENTS; EXISTENCE; CONSTRUCTIONS; DESIGNS; FRAME;
D O I
10.1002/jcd.21744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces almost partitionable sets (APSs) to generalize the known concept of partitionable sets. These notions provide a unified frame to construct Z-cyclic patterned starter whist tournaments and cyclic balanced sampling plans excluding contiguous units. The existences of partitionable sets and APSs are investigated. As an application, a large number of optical orthogonal codes achieving the Johnson bound or the Johnson bound minus one are constructed.
引用
收藏
页码:783 / 813
页数:31
相关论文
共 43 条
[1]   Existence of directed triplewhist tournaments with the three person property 3P DT Wh(v) [J].
Abel, R. J. R. ;
Bennett, F. E. ;
Ge, Gennian .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) :2655-2665
[2]   New Z-cyclic triplewhist frames and triplewhist tournament designs [J].
Abel, R. Julian R. ;
Finizio, Norman J. ;
Ge, Gennian ;
Greig, Malcolm .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (12) :1649-1673
[3]   Necessary conditions for the existence of two classes of ZCPS-Wh(v) [J].
Abel, R. Julian R. ;
Anderson, Ian ;
Finizio, Norman J. .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) :848-851
[4]   New product theorems for Z-cyclic whist tournaments [J].
Anderson, I ;
Finizio, NJ ;
Leonard, PA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (01) :162-166
[5]  
Anderson I., 1995, J COMBIN MATH COMBIN, V19, P129
[6]  
ANDERSON I., 1997, COMBINATORIAL DESIGN
[7]  
Baker R.D., 1975, Congressus Numerantium, V14, P89
[8]  
Baker R. D., WHIST TOURNAME UNPUB
[9]  
Bennett FE., 1992, Contemporary Design Theory: A Collection of Surveys, P41
[10]   BRIDGE TOURNAMENT PROBLEM AND CALIBRATION DESIGNS FOR COMPARING PAIRS OF OBJECTS [J].
BOSE, RC ;
CAMERON, JM .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1965, B 69 (04) :323-+