Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films

被引:50
作者
Arehart, A. R. [1 ]
Corrion, A. [2 ,3 ]
Poblenz, C. [2 ,3 ]
Speck, J. S. [2 ,3 ]
Mishra, U. K. [2 ,3 ]
DenBaars, S. P. [2 ,3 ]
Ringel, S. A. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
来源
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 6 | 2008年 / 5卷 / 06期
关键词
D O I
10.1002/pssc.200778622
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of rf-plasma and ammonia nitrogen sources for growth of GaN films by molecular beam epitaxy (MBE) are compared in terms. of defect incorporation using deep level. optical spectroscopy (DLOS). and deep level transient spectroscopy (DLTS). To better improve the understanding of ammonia-based MBE growth of GaN and potential defect sources as opposed to the more studied plasma source-based MBE-grown, material several V/III ratios were also investigated, which were generated via systematic adjustment of the ammonia flow rates during growth. The DLOS spectra, comparing deep traps within the n-GaN grown using N-plasma and ammonia sources, reveal the presence of the same deep levels due tok background carbon and gallium vacancies, with energy levels at EC-3.28, EC-2.62, and EC-1.28. The DLTS results of the N-plasma and ammonia-based MBE samples show two similarly dominant electron traps at EC-0.60, and EC-0.24 in each sample. Measurements made as a function of V/III flux ratio for ammonia-based MBE growth indicate a large dependence of the EC-0.24 eV trap concentration on growth flux ratio, which is significant for guiding continued optimization of this promising MBE growth method for GaN devices.
引用
收藏
页码:1750 / +
页数:2
相关论文
共 10 条
[1]   Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition [J].
Armstrong, A ;
Arehart, AR ;
Moran, B ;
DenBaars, SP ;
Mishra, UK ;
Speck, JS ;
Ringel, SA .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :374-376
[2]   Developments for the production of high-quality and high-uniformity AlGaN/GaN heterostructures by ammonia MBE [J].
Cordier, Y. ;
Semond, F. ;
Massies, J. ;
Leroux, M. ;
Lorenzini, P. ;
Chaix, C. .
JOURNAL OF CRYSTAL GROWTH, 2007, 301 :434-436
[3]   Deep centers in n-GaN grown by reactive molecular beam epitaxy [J].
Fang, ZQ ;
Look, DC ;
Kim, W ;
Fan, Z ;
Botchkarev, A ;
Morkoc, H .
APPLIED PHYSICS LETTERS, 1998, 72 (18) :2277-2279
[4]   ANALYSIS OF DEEP LEVELS IN N-TYPE GAN BY TRANSIENT CAPACITANCE METHODS [J].
HACKE, P ;
DETCHPROHM, T ;
HIRAMATSU, K ;
SAWAKI, N ;
TADATOMO, K ;
MIYAKE, K .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (01) :304-309
[5]   Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy [J].
Hautakangas, S. ;
Makkonen, I. ;
Ranki, V. ;
Puska, J. ;
Saarinen, K. ;
Xu, X. ;
Look, D. C. .
PHYSICAL REVIEW B, 2006, 73 (19)
[6]   Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes [J].
Hierro, A ;
Kwon, D ;
Ringel, SA ;
Hansen, M ;
Speck, JS ;
Mishra, UK ;
DenBaars, SP .
APPLIED PHYSICS LETTERS, 2000, 76 (21) :3064-3066
[7]   Impact of Ga/N flux ratio on trap states in n-GaN grown by plasma-assisted molecular-beam epitaxy [J].
Hierro, A ;
Arehart, AR ;
Heying, B ;
Hansen, M ;
Mishra, UK ;
DenBaars, SP ;
Speck, JS ;
Ringel, SA .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :805-807
[8]   Hydrogen passivation of deep levels in n-GaN [J].
Hierro, A ;
Ringel, SA ;
Hansen, M ;
Speck, JS ;
Mishra, UK ;
DenBaars, SP .
APPLIED PHYSICS LETTERS, 2000, 77 (10) :1499-1501
[9]  
LOOK DC, 1997, PHYS REV LETT, V83, P2003
[10]   Gallium vacancies and the yellow luminescence in GaN [J].
Neugebauer, J ;
Van de Walle, CG .
APPLIED PHYSICS LETTERS, 1996, 69 (04) :503-505