Tiny Robot Learning: Challenges and Directions for Machine Learning in Resource-Constrained Robots

被引:12
|
作者
Neuman, Sabrina M. [1 ]
Plancher, Brian [1 ]
Duisterhof, Bardienus P. [2 ]
Krishnan, Srivatsan [1 ]
Banbury, Colby [1 ]
Mazumder, Mark [1 ]
Prakash, Shvetank [1 ]
Jabbour, Jason [3 ]
Faust, Aleksandra [4 ]
de Croon, Guido C. H. E. [5 ]
Reddi, Vijay Janapa [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] CMU, Pittsburgh, PA USA
[3] Univ Virginia, Charlottesville, VA 22903 USA
[4] Google Brain, Mountain View, CA USA
[5] Delft Univ Technol, Delft, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1109/AICAS54282.2022.9870000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) has become a pervasive tool across computing systems. An emerging application that stress-tests the challenges of ML system design is tiny robot learning, the deployment of ML on resource-constrained low-cost autonomous robots. Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints; sensor, actuator, and compute hardware limitations; end-to-end system tradeoffs; and a large diversity of possible deployment scenarios. Tiny robot learning requires ML models to be designed with these challenges in mind, providing a crucible that reveals the necessity of holistic ML system design and automated end-to-end design tools for agile development. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 50 条
  • [31] RCV2023 Challenges: Benchmarking Model Training and Inference for Resource-Constrained Deep Learning
    Tiwari, Rishabh
    Chavan, Arnav
    Gupta, Deepak
    Mago, Gowreesh
    Gupta, Animesh
    Gupta, Akash
    Sharan, Suraj
    Yang, Yukun
    Zhao, Shanwei
    Wang, Shihao
    Kwak, Youngjun
    Jeong, Seonghun
    Lee, Yunseung
    Kim, Changick
    Kim, Subin
    Gankhuyag, Ganzorig
    Jung, Ho
    Ryu, Junwhan
    Kim, HaeMoon
    Kim, Byeong H.
    Vo, Tu
    Zaheer, Sheir
    Holston, Alexander
    Park, Chan
    Dixit, Dheemant
    Lele, Nahush
    Bhushan, Kushagra
    Bhowmick, Debjani
    Arya, Devanshu
    Gulshad, Sadaf
    Habibian, Amirhossein
    Ghodrati, Amir
    Bejnordi, Babak
    Gupta, Jai
    Liu, Zhuang
    Yu, Jiahui
    Prasad, Dilip
    Shen, Zhiqiang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 1526 - 1535
  • [32] Deep Machine Learning Model Trade-Offs for Malaria Elimination in Resource-Constrained Locations
    Eze, Peter U.
    Asogwa, Clement O.
    BIOENGINEERING-BASEL, 2021, 8 (11):
  • [33] Predicting Solar-Harvested Energy for Resource-Constrained IoT Devices Using Machine Learning
    Khamitov, Rakhat
    Orel, Daniil
    Zorbas, Dimitrios
    2024 20TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS, DCOSS-IOT 2024, 2024, : 661 - 668
  • [34] Demo: Privacy-Preserving Decentralized Machine Learning Framework for Clustered Resource-Constrained Devices
    Hidayat, Muhammad Ayat
    Nakamura, Yugo
    Arakawa, Yutaka
    PROCEEDINGS OF THE 2024 THE 22ND ANNUAL INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS AND SERVICES, MOBISYS 2024, 2024, : 612 - 613
  • [35] Adaptive Asynchronous Federated Learning in Resource-Constrained Edge Computing
    Liu, Jianchun
    Xu, Hongli
    Wang, Lun
    Xu, Yang
    Qian, Chen
    Huang, Jinyang
    Huang, He
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) : 674 - 690
  • [36] A Digital Implementation of Extreme Learning Machines for Resource-Constrained Devices
    Ragusa, Edoardo
    Gianoglio, Christian
    Gastaldo, Paolo
    Zunino, Rodolfo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (08) : 1104 - 1108
  • [37] Resource-Constrained Multisource Instance-Based Transfer Learning
    Askarizadeh, Mohammad
    Morsali, Alireza
    Nguyen, Kim Khoa
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1029 - 1043
  • [38] Adaptive Decentralized Federated Learning in Resource-Constrained IoT Networks
    Du, Mengxuan
    Zheng, Haifeng
    Gao, Min
    Feng, Xinxin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 10739 - 10753
  • [39] Personalized Fair Split Learning for Resource-Constrained Internet of Things
    Chen, Haitian
    Chen, Xuebin
    Peng, Lulu
    Bai, Yuntian
    Polap, Dawid
    SENSORS, 2024, 24 (01)
  • [40] AdaptiveMesh: Adaptive Federated Learning for Resource-Constrained Wireless Environments
    Shkurti, Lamir
    Selimi, Mennan
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (14) : 22 - 37