Tiny Robot Learning: Challenges and Directions for Machine Learning in Resource-Constrained Robots

被引:12
|
作者
Neuman, Sabrina M. [1 ]
Plancher, Brian [1 ]
Duisterhof, Bardienus P. [2 ]
Krishnan, Srivatsan [1 ]
Banbury, Colby [1 ]
Mazumder, Mark [1 ]
Prakash, Shvetank [1 ]
Jabbour, Jason [3 ]
Faust, Aleksandra [4 ]
de Croon, Guido C. H. E. [5 ]
Reddi, Vijay Janapa [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] CMU, Pittsburgh, PA USA
[3] Univ Virginia, Charlottesville, VA 22903 USA
[4] Google Brain, Mountain View, CA USA
[5] Delft Univ Technol, Delft, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1109/AICAS54282.2022.9870000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) has become a pervasive tool across computing systems. An emerging application that stress-tests the challenges of ML system design is tiny robot learning, the deployment of ML on resource-constrained low-cost autonomous robots. Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints; sensor, actuator, and compute hardware limitations; end-to-end system tradeoffs; and a large diversity of possible deployment scenarios. Tiny robot learning requires ML models to be designed with these challenges in mind, providing a crucible that reveals the necessity of holistic ML system design and automated end-to-end design tools for agile development. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 50 条
  • [1] Tiny Machine Learning for Resource-Constrained Microcontrollers
    Immonen, Riku
    Hamalainen, Timo
    JOURNAL OF SENSORS, 2022, 2022
  • [2] Machine Learning and Optimization for Resource-Constrained Platforms
    Barnes, Patrick
    Murawski, Robert
    2019 IEEE COGNITIVE COMMUNICATIONS FOR AEROSPACE APPLICATIONS WORKSHOP (CCAAW), 2019,
  • [3] The application of machine learning models in a resource-constrained environment
    Heffernan, Addison M.
    Shin, Jaewook
    Otoki, Kemunto
    Parker, Robert K.
    Heffernan, Daithi S.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2025,
  • [4] Enabling Machine Learning on Resource-constrained Tactical Networks
    Perazzone, Jake
    Dwyer, Matthew
    Chan, Kevin
    Anderson, Cleon
    Brown, Scott
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [5] Resource-Constrained Machine Learning for ADAS: A Systematic Review
    Borrego-Carazo, Juan
    Castells-Rufas, David
    Biempica, Ernesto
    Carrabina, Jordi
    IEEE ACCESS, 2020, 8 : 40573 - 40598
  • [6] A Review on Resource-Constrained Embedded Vision Systems-Based Tiny Machine Learning for Robotic Applications
    Beltran-Escobar, Miguel
    Alarcon, Teresa E.
    Rumbo-Morales, Jesse Y.
    Lopez, Sonia
    Ortiz-Torres, Gerardo
    Sorcia-Vazquez, Felipe D. J.
    ALGORITHMS, 2024, 17 (11)
  • [7] Guest Editorial: Robust Resource-Constrained Systems for Machine Learning
    Theocharides, Theocharis
    Shafique, Muhammad
    Choi, Jungwook
    Mutlu, Onur
    IEEE DESIGN & TEST, 2020, 37 (02) : 5 - 7
  • [8] An adaptive machine learning algorithm for the resource-constrained classification problem
    Shifman, Danit Abukasis
    Cohen, Izack
    Huang, Kejun
    Xian, Xiaochen
    Singer, Gonen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [9] Making distributed edge machine learning for resource-constrained communities and environments smarter: contexts and challenges
    Truong H.-L.
    Truong-Huu T.
    Cao T.-D.
    Journal of Reliable Intelligent Environments, 2023, 9 (02) : 119 - 134
  • [10] Learning-Driven Decentralized Machine Learning in Resource-Constrained Wireless Edge Computing
    Meng, Zeyu
    Xu, Hongli
    Chen, Min
    Xu, Yang
    Zhao, Yangming
    Qia, Chunming
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021), 2021,