Using evolutionary programming and minimum description length principle for data mining of Bayesian networks

被引:0
|
作者
Wong, ML [1 ]
Lam, W
Leung, KS
机构
[1] Lingnan Coll, Dept Informat Syst, Tuen Mun, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Peoples R China
关键词
evolutionary computation; Bayesian networks; unsupervised learning; minimum description length principle; genetic algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a new approach (MDLEP) to learning Bayesian network structures based on the Minimum Description Length (MDL) principle and Evolutionary Programming (EP). It employs a MDL metric, which is founded on information theory, and integrates a knowledge-guided genetic operator for the optimization in the search process.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [21] Data mining in Network engineering-Bayesian Networks for Data Mining
    Wang, Xiao Dan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMMERCE AND SOCIETY, 2015, 17 : 412 - 417
  • [22] Medical data mining using evolutionary computation
    Ngan, PS
    Wong, ML
    Lam, W
    Leung, KS
    Cheng, JCY
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 16 (01) : 73 - 96
  • [23] Using the minimum description length principle to reduce the rate of false positives of best-fit algorithms
    Fang, Jie
    Ouyang, Hongjia
    Shen, Liangzhong
    Dougherty, Edward R.
    Liu, Wenbin
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2014, (01) : 1 - 8
  • [24] Epidemiological data mining of cardiovascular Bayesian networks
    Twardy, Charles R.
    Nicholson, Ann E.
    Korb, Kevin B.
    McNeil, John
    ELECTRONIC JOURNAL OF HEALTH INFORMATICS, 2006, 1 (01):
  • [25] An introduction to coding theory and the two-part minimum description length principle
    Lee, TCM
    INTERNATIONAL STATISTICAL REVIEW, 2001, 69 (02) : 169 - 183
  • [26] High-dimensional penalty selection via minimum description length principle
    Miyaguchi, Kohei
    Yamanishi, Kenji
    MACHINE LEARNING, 2018, 107 (8-10) : 1283 - 1302
  • [27] High-dimensional penalty selection via minimum description length principle
    Kohei Miyaguchi
    Kenji Yamanishi
    Machine Learning, 2018, 107 : 1283 - 1302
  • [28] Data Mining in Complex Diseases Using Evolutionary Computation
    Aguiar, Vanessa
    Seoane, Jose A.
    Freire, Ana
    Munteanu, Cristian R.
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 917 - 924
  • [29] Using Bayesian networks to build data mining applications for a semiconductor cleaning process
    Chen, Ruey-Shun
    Chang, Chan-Chine
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2007, 30 (04): : 386 - 407
  • [30] Minimum Free Energy Principle for Constraint-Based Learning Bayesian Networks
    Isozaki, Takashi
    Ueno, Maomi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 612 - 627