Stability and Performance of SISO Control Systems With First-Order Reset Elements

被引:107
作者
Nesic, Dragan [1 ]
Teel, Andrew R. [2 ]
Zaccarian, Luca [3 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] Univ Rome, Dipartimento Informat Sistemi & Prod, I-00133 Rome, Italy
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
First-order reset element (FORE); homogeneus hybrid systems; temporal regularization; INTEGRATOR; PLANT;
D O I
10.1109/TAC.2011.2114436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider set-point regulation and L-2 robust stability properties of a class of reset control systems consisting of a minimum-phase relative degree-one linear SISO plant controlled by a novel first-order reset element (FORE). These results rely on necessary and sufficient conditions for exponential and L-2 finite gain stability of a class of planar reset systems consisting of a scalar linear plant controlled by the novel FORE. We show that the L-2 gain of the planar reset system decreases to zero as the pole and/or the gain of the FORE are increased to infinity. A number of stability results, including Lyapunov conditions for L-p and exponential stability, for a larger class of reset and hybrid systems are presented and used to prove our main results.
引用
收藏
页码:2567 / 2582
页数:16
相关论文
共 35 条
[1]   Performance analysis of reset control systems [J].
Aangenent, W. H. T. M. ;
Witvoet, G. ;
Heemels, W. P. M. H. ;
van de Molengraft, M. J. G. ;
Steinbuch, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (11) :1213-1233
[2]  
[Anonymous], 1990, OPTIMIZATION NONSMOO
[3]   Lyapunov-based integrator resetting with application to marine thruster control [J].
Bakkeheim, Jostein ;
Johansen, Tor A. ;
Smogeli, Oyvind N. ;
Sorensen, Asgeir J. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (05) :908-917
[4]   Delay-Independent Stability of Reset Systems [J].
Banos, Alfonso ;
Barreiro, Antonio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :341-346
[5]   Delay-dependent stability of reset systems [J].
Barreiro, Antonio ;
Banos, Alfonso .
AUTOMATICA, 2010, 46 (01) :216-221
[6]   Fundamental properties of reset control systems [J].
Beker, O ;
Hollot, CV ;
Chait, Y ;
Han, H .
AUTOMATICA, 2004, 40 (06) :905-915
[7]   Plant with integrator: An example of reset control overcoming limitations of linear feedback [J].
Beker, O ;
Hollot, CV ;
Chait, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) :1797-1799
[8]   Smooth Lyapunov functions for hybrid systems part II: (Pre)asymptotically stable compact sets [J].
Cai, Chaohong ;
Teel, Andrew R. ;
Goebel, Rafal .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) :734-748
[9]   Characterizations of input-to-state stability for hybrid systems [J].
Cai, Chaohong ;
Teel, Andrew R. .
SYSTEMS & CONTROL LETTERS, 2009, 58 (01) :47-53
[10]   A passivity-based approach to reset control systems stability [J].
Carrasco, Joaquin ;
Banos, Alfonso ;
van der Schaft, Arjan .
SYSTEMS & CONTROL LETTERS, 2010, 59 (01) :18-24