We consider set-point regulation and L-2 robust stability properties of a class of reset control systems consisting of a minimum-phase relative degree-one linear SISO plant controlled by a novel first-order reset element (FORE). These results rely on necessary and sufficient conditions for exponential and L-2 finite gain stability of a class of planar reset systems consisting of a scalar linear plant controlled by the novel FORE. We show that the L-2 gain of the planar reset system decreases to zero as the pole and/or the gain of the FORE are increased to infinity. A number of stability results, including Lyapunov conditions for L-p and exponential stability, for a larger class of reset and hybrid systems are presented and used to prove our main results.
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
Cai, Chaohong
;
Teel, Andrew R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
Teel, Andrew R.
;
Goebel, Rafal
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
Cai, Chaohong
;
Teel, Andrew R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
Teel, Andrew R.
;
Goebel, Rafal
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA