Luminescent properties of metal-organic frameworks embedded in methacrylated gelatin for its application in biocompatible 3D printable materials

被引:4
作者
Gomez-Lizarraga, Karla [1 ]
Garduno-Wilches, Ismael [2 ]
Narro-Rios, Jorge [3 ]
Pina-Barba, Cristina [4 ]
Aguilar-Frutis, Miguel [3 ]
Alarcon-Flores, Gilberto [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Catedras Conacyt, Circuito Exterior S-N, Ciudad De Mexico 04510, Mexico
[2] Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Catedras Conacyt, Inst Politecn Nacl, Calzada Legaria 694, Ciudad De Mexico 11500, Mexico
[3] Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Inst Politecn Nacl, Calzada Legaria 694, Ciudad De Mexico 11500, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Invest Mat, Circuito Exterior S-N,Ciudad Univ, Ciudad De Mexico 04510, Mexico
关键词
Metal-organic frameworks; Methacrylated gelatin; Luminescence; 3D printing; Photopolymerization; FDM TECHNOLOGY;
D O I
10.1007/s11051-022-05449-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, nanoparticles of a luminescent metal-organic framework were embedded in a photopolymerized methacrylated gelatin. Steady-state and time-resolved luminescence spectroscopy was used to explore the drying and the photopolymerization processes, as well as the effect the methacrylated gelatin had on the quantum yield and decay time of the nanoparticles. A drying time of 27.5 min was needed for a 20 mu L droplet, and the proposed intensity ratio analysis resulted in a minimum irradiation time of 18.6 min, at a lamp intensity of 2.7 W/m(2), for the photopolymerization process to end. The presence of the methacrylated gelatin decreased the quantum yield of the nanoparticles and influenced the emission decay time. The intensity ratio showed that a concentration between 1 and 3% w/V of nanoparticles in the solution is required for the luminescence to be observed and to avoid the important quenching effect.
引用
收藏
页数:14
相关论文
共 38 条
  • [1] Luminescent and Structural Characteristics of Y2O3:Tb3+ Thin Films as a Function of Substrate Temperature
    Alarcon-Flores, G.
    Garcia-Hipolito, M.
    Aguilar-Frutis, M.
    Carmona-Tellez, S.
    Martinez-Martinez, R.
    Campos-Arias, M. P.
    Jimenez-Estrada, M.
    Falcony, C.
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (10) : R189 - R194
  • [2] 3D printing technology; methods, biomedical applications, future opportunities and trends
    Bozkurt, Yahya
    Karayel, Elif
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 1430 - 1450
  • [3] Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications
    Charoo, Naseem A.
    Ali, Sogra F. Barakh
    Mohamed, Eman M.
    Kuttolamadom, Mathew A.
    Ozkan, Tanil
    Khan, Mansoor A.
    Rahman, Ziyaur
    [J]. DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2020, 46 (06) : 869 - 877
  • [4] Electronic and Vibrational Absorption Spectra of NH2 in Solid Ne
    Chou, Sheng-Lung
    Lo, Jen-Iu
    Peng, Yu-Chain
    Lu, Hsiao-Chi
    Cheng, Bing-Ming
    [J]. ACS OMEGA, 2019, 4 (01): : 2268 - 2274
  • [5] Dann T, 2021, MAT BASEL
  • [6] Dobretsov G. E., 2014, Biofizika, V59, P231
  • [7] Invited review article: Where and how 3D printing is used in teaching and education
    Ford, Simon
    Minshall, Tim
    [J]. ADDITIVE MANUFACTURING, 2019, 25 : 131 - 150
  • [8] The Chemistry and Applications of Metal-Organic Frameworks
    Furukawa, Hiroyasu
    Cordova, Kyle E.
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. SCIENCE, 2013, 341 (6149) : 974 - +
  • [9] 3D printing materials and their use in medical education: a review of current technology and trends for the future
    Garcia, Justine
    Yang, ZhiLin
    Mongrain, Rosaire
    Leask, Richard L.
    Lachapelle, Kevin
    [J]. BMJ SIMULATION & TECHNOLOGY ENHANCED LEARNING, 2018, 4 (01): : 27 - 40
  • [10] Garduno-Wilches Ismael A., 2021, Nano-Structures & Nano-Objects, V26, DOI 10.1016/j.nanoso.2021.100736