Patterns of Histone H3 Lysine 27 Monomethylation and Erythroid Cell Type-specific Gene Expression

被引:21
作者
Steiner, Laurie A. [1 ]
Schulz, Vincent P. [1 ]
Maksimova, Yelena [1 ]
Wong, Clara [1 ]
Gallagher, Patrick G. [1 ,2 ]
机构
[1] Yale Univ, Sch Med, Dept Pediat, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
ELEMENT ANNOTATION SYSTEM; HUMAN GENOME; METHYLTRANSFERASE ACTIVITY; MAMMALIAN CHROMATIN; STEM-CELLS; METHYLATION; POLYCOMB; DROSOPHILA; COMPLEXES; EPIGENETICS;
D O I
10.1074/jbc.M111.243006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-translational histone modifications, acting alone or in a context-dependent manner, influence numerous cellular processes via their regulation of gene expression. Monomethylation of histone H3 lysine 27 (K27me1) is a poorly understood histone modification. Some reports describe depletion of K27Me1 at promoters and transcription start sites (TSS), implying its depletion at TSS is necessary for active transcription, while others have associated enrichment of H3K27me1 at TSS with increased levels of mRNA expression. Tissue- and gene-specific patterns of H3K27me1 enrichment and their correlation with gene expression were determined via chromatin immunoprecipitation on chip microarray (ChIP-chip) and human mRNA expression array analyses. Results from erythroid cells were compared with those in neural and muscle cells. H3K27me1 enrichment varied depending on levels of cell-type specific gene expression, with highest enrichment over transcriptionally active genes. Over individual genes, the highest levels of H3K27me1 enrichment were found over the gene bodies of highly expressed genes. In contrast to H3K4me3, which was highly enriched at the TSS of actively transcribing genes, H3K27me1 was selectively depleted at the TSS of actively transcribed genes. There was markedly decreased to no H3K27me1 enrichment in genes with low expression. At some locations, H3K27 monomethylation was also found to be associated with chromatin signatures of gene enhancers.
引用
收藏
页码:39457 / 39465
页数:9
相关论文
共 40 条
[1]   Gene regulation by nucleosome positioning [J].
Bai, Lu ;
Morozov, Alexandre V. .
TRENDS IN GENETICS, 2010, 26 (11) :476-483
[2]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[3]   The complex language of chromatin regulation during transcription [J].
Berger, Shelley L. .
NATURE, 2007, 447 (7143) :407-412
[4]   An operational definition of epigenetics [J].
Berger, Shelley L. ;
Kouzarides, Tony ;
Shiekhattar, Ramin ;
Shilatifard, Ali .
GENES & DEVELOPMENT, 2009, 23 (07) :781-783
[5]   Covalent modifications of histones during development and disease pathogenesis [J].
Bhaumik, Sukesh R. ;
Smith, Edwin ;
Shilatifard, Ali .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (11) :1008-1016
[6]   Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome [J].
Bieda, M ;
Xu, XQ ;
Singer, MA ;
Green, R ;
Farnham, PJ .
GENOME RESEARCH, 2006, 16 (05) :595-605
[7]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[8]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[9]   Histones: Annotating Chromatin [J].
Campos, Eric I. ;
Reinberg, Danny .
ANNUAL REVIEW OF GENETICS, 2009, 43 :559-599
[10]   Chromatin Signatures in Multipotent Human Hematopoietic Stem Cells Indicate the Fate of Bivalent Genes during Differentiation [J].
Cui, Kairong ;
Zang, Chongzhi ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Childs, Richard W. ;
Peng, Weiqun ;
Zhao, Keji .
CELL STEM CELL, 2009, 4 (01) :80-93